Paralympics 2024, India’s schedule on September 4: Tokyo medallists Harvinder, Bhavina in action

Paralympics 2024, India’s schedule on September 4: Tokyo medallists Harvinder, Bhavina in action

‘Masala’ revisited: Why the cult cosmic comedy has retained its kick three decades later

‘Masala’ revisited: Why the cult cosmic comedy has retained its kick three decades later

Netflix adds disclaimer to series ‘IC 814: The Kandahar Hijack’ after Centre’s summons

Netflix adds disclaimer to series ‘IC 814: The Kandahar Hijack’ after Centre’s summons

September nonfiction: A new book of Indian history by William Dalrymple and five more titles to read

September nonfiction: A new book of Indian history by William Dalrymple and five more titles to read

Challenge to restore land degraded by coal mining in India, finds study

Challenge to restore land degraded by coal mining in India, finds study

Combination of physical exercise and mental stimulation can boost brain health as you age

Combination of physical exercise and mental stimulation can boost brain health as you age

India at Paralympics, Day 6, as it happened: India’s medal tally rises to 20 with five medals

India at Paralympics, Day 6, as it happened: India’s medal tally rises to 20 with five medals

India is losing the taste for toddy

India is losing the taste for toddy

Microsoft’s giant data centre in Telangana village accused of dumping waste, encroaching on lake

Microsoft’s giant data centre in Telangana village accused of dumping waste, encroaching on lake

‘Tomorrow, you watch, god will sprout from me’: Nepali poet Avinash Shrestha in translation

‘Tomorrow, you watch, god will sprout from me’: Nepali poet Avinash Shrestha in translation

Gujarat is battered by heat waves, floods, drought. How are its cities coping?

Rising climate variability is adding to the state’s environmental vulnerabilities..

Gujarat is battered by heat waves, floods, drought. How are its cities coping?

What does the climate map of Gujarat currently look like?

Southern parts of the state get fewer days of rainfall now. In Surat, for instance, locals say that rainfall patterns over the city began changing about 15 years ago, with the city getting fewer days of rain each year. However, the rainfall is more intense, so Surat floods more often.

In Ahmedabad, 270 km to the north, the mercury topped 50 degrees Celsius last year – the previous high was 47.8 degrees Celsius over 100 years ago, in 1916 . Another 150 km to the north lies Banaskantha , a normally arid region. Here, heavy rains caused flooding this year. To the south-west, in arid Saurashtra, farmers and scientists talk about delayed monsoons, increasingly torrential downpours and increased flooding .

There is little that is surprising here. Across India, climate variability is disrupting the structures of everyday life. In 2015, changing mid-latitude westerlies triggered a whitefly infestation that ruined Punjab’s cotton crop. In Tamil Nadu, rising sea temperatures have affected the fish catch. Inland, towards the town of Sivagangai, a weakening South-West monsoon has contributed to a drop in farm earnings and rising indebtedness. In Bihar, scientists in the agriculture university outside Bhagalpur say that crop yields are falling as heat waves increase in frequency.

The first five states Scroll.in’s Ear To The Ground project reported from – Mizoram, Odisha, Punjab, Tamil Nadu and Bihar – were not doing much to adapt to, or mitigate the effects of, such climatic changes.

What about Gujarat?

climate change essay in gujarati pdf

Environmental vulnerabilities

Till the early 2000s, Gujarat had a very different sense of its environmental vulnerabilities.

In 1998, a super cyclone had ripped through the port city of Kandla. Three years later, a quake reduced Bhuj to rubble. In response, Gujarat conducted a hazard and vulnerability analysis.

GK Bhat, the founder of Taru, an environmental consultancy based in Ahmedabad, said that the major environmental risks the study flagged were drought, flood, cyclone and earthquakes. Of these, the greatest exposure was to drought, he said.

Since then, Gujarat has tried hard to drought-proof itself. Apart from building check dams to boost groundwater levels, it kicked off two large water management programmes – both feeding off the Sardar Sarovar Dam. The first was Sujlam Suflam – a canal that moves surplus Narmada waters (what is left during the monsoons after statutory allocations to all states) to North Gujarat. This canal was left unlined hoping it would recharge groundwater levels along its route. The second was Sauni Yojana – a network of pipelines that takes Narmada water to Saurashtra.

But now, rising climate variability is adding to the state’s environmental vulnerabilities.

Gujarat claims to have taken climate variability more seriously than other states. As Gujarat chief minister, Narendra Modi wrote a book on climate change. Gujarat was the first state in India to set up a department for climate change. Its cities are developing plans that seek to adapt or mitigate the worst fallout of climatic stress. While Ahmedabad has a roadmap to handle heat waves, Surat has a similar blueprint to tackle floods.

How far do the state’s efforts help Gujarat adapt to – and mitigate – the fallouts of a changing climate? Scroll.in’s Ear To The Ground project decided to take a closer look. Given that Gujarat is one of India’s most urbanised states, we studied urban planning to see how well adaptation and mitigation are being mainstreamed into the planning and implementation processes in the state.

But first, how exactly does climate variability affect cities?

climate change essay in gujarati pdf

Cities and climate trends

Climate variability affects cities in two ways essentially. The first is in the form of extreme weather like heavy rain or floods. And the second, in slower, subtler ways, like gradual increases in temperature or an increase in the sea level.

Think of the first as a shock. The second, as a stress. Gujarat is seeing both. Its cities saw heavy downpours during the 2017 monsoon. At the same time, temperature patterns are changing, said Saswat Bandopadhyay, faculty member in the department of planning at Ahmedabad’s CEPT University. In Ahmedabad, for instance, the difference between daytime and night-time temperature has reduced. “At one time, even if the mercury went up to 45 degrees Celsius, nights were pleasant and temperatures came down to [between] 25 degrees Celsius and 26 degrees Celsius,” he said. But now, he added, “They come down just half as much – to [between] 32 degrees Celsius and 34 degrees Celsius.”

climate change essay in gujarati pdf

Shocks and stresses come with different challenges for a city.

The first comes with cascading fallouts, said Bhat. He cited the example of especially heavy rainfall. Its first fallout is not flooding but traffic jams, he said. During these events, cities start shutting down. “Cities depend on networks – a flow of milk, a flow of food, cash for ATMs,” said Bhat. “As one urban system fails, it incapacitates the others. And cities see a progressive network failure.”

Bhat drew an analogy with a living system. “These [urban failures] are not independent failures,” he said. “But multi-organ failure. Every failing organ incapacitates the rest – reaching social unrest and epidemics in its higher reaches.”

Rising temperatures, on the other hand, trigger a spiral. For instance, when night brings no relief from high temperatures, as in Ahmedabad, many people cannot sleep without the use of air-conditioners . But these expel hot air, which heats the city up further.

How do urban planners respond to such challenges? One part of the response lies in zoning. Bandopadhyay said each city needs natural spaces that absorb environmental shocks. If a city is vulnerable to floods, it needs to create spaces where the water can collect and get absorbed. If high temperatures are a problem, ensuring sufficient green cover is one way to cool the city down.

He referred to the climate mitigation efforts of Parramatta, a suburb of Sydney, Australia. “They created a very detailed assessment of surface temperatures and then looked at the level of surface greening needed to manage that,” he said.

He added that its planners also asked other questions, like the building material that should be used in the region. “They modelled wind patterns because city layouts [like tall buildings] would influence those.”

So far, urban India has not done much to mitigate the effects of climate variability . Instead of using building materials suitable for our climate, a lot of modern construction in India relies on inappropriate construction materials. Several malls and office buildings, for instance, are clad in glass panels, which absorb heat and drive up cooling costs.

Similarly, most Indian cities have a low tree cover and more hard surfaces. “Most of our plots are concretised to maximise built-up space,” said Bandopadhyay. “The land outside is also paved over and tarred. There is very little open area for water absorption.”

The fallout? As Bengaluru found recently, even after heavy rains, there is little groundwater recharge. At the same time, lakes, which recharge groundwater, are being killed through real estate development. Little thought is given to water supply. When water scarcities loom, urban areas source water from increasingly lenghty distances. Government efforts often ignore the poor, forcing them into private water markets.

In peri-urban areas, something else is awry. Take any city, said Bhat, and you will find that the panchayat president has given permission for even five-to-seven-storey buildings to be constructed in villages that fall outside municipal boundaries. “When the municipal corporation expands its limits, it finds these strange places where buildings are standing – but there are no roads, water supply or sewage,” he said. “The whole place works only on groundwater.”

As climate change becomes a reality, all this needs to change.

climate change essay in gujarati pdf

Rajkot’s response

To understand how Gujarat is factoring changing climate trends into urban planning, this correspondent visited Rajkot.

Rajkot, the fourth-biggest city in Gujarat after Ahmedabad, Vadodara and Surat, is located close to the centre of Saurashtra. The city is urbanising rapidly as people, drawn by both its industrial and service economy as well as Gujarat’s weakening rural economy, flock here. It is also a water-scarce city. Its second revised draft development plan (2031) says: “[Rajkot Municipal Corporation] is able to supply only 20 minutes of water daily as against the benchmark of 24 hours.”

A closer look at the city’s work on preparing for climate change shows a mixed picture.

On some fronts, Rajkot is doing well. To make the city more energy-efficient, Rajkot’s Municipal Corporation has made solar heaters mandatory. Rainwater harvesting is mandatory too. These efforts, however, are undercut by other decisions. As it expands, Rajkot is leaving very little room for environmental sinks like green zones. As a city grows, it should leave about 30% of its surface area for green zones and environmental sinks, said Mahesh Rajasekar, a former environmental consultant with Taru. “What holds true for a nation also holds true at a smaller, ward level.”

But Rajkot’s old city has a green cover of about 2%, and its periphery does not fare any better.

A town planner who has worked in both the Rajkot Municipal Corporation and the Rajkot Urban Development Authority, who did not want to be identified, explained why this was the case. He said that as a planner, he can take 30% to 40% of a land-owner’s land for a public purpose. “Half of that will go into roads,” he said. “Some more will go into civic infrastructure. The rest goes into parks and gardens. You will not have as much green zone as desired.”

Or take water. Rajkot currently needs about 270 million litres of water every day. Of this, it gets about 125 million litres from local reservoirs and it draws about 155 million litres to 165 million litres from the Narmada. “Our total supply is 300 MLD [million litres a day],” said senior municipal corporation official. “What we use is 270 MLD. We have a small buffer.”

That will change with the city’s expansion. By 2031, the town’s water demand will be 400 million litres a day, he said. Where will this water come from?

“Ask about water supply and officials say they will get it from the Narmada,” said Bandopadhyay. But that is easier said than done. The water from the Sauni network of pipelines comes with its own uncertainties.

Said the municipal official: “I have full reliability from my local reservoirs. But Sauni will not be 100% reliable. Like us, all corporations are planning till 2045. and making their own [water] drawal plans.”

That is not all. Water from the Sauni project is expensive. “The cost of my water from Aji and Nyari [rivers] is Rs 2 to Rs 3 per kilolitre,” said the municipal corporation official. “The cost of the water from the Sauni [project] is Rs 12 to Rs 15 [per kilolitre].”

The water from the Sauni is so expensive due to the cost of energy used to transport it. It has to be pumped uphill from near sea level – where the Narmada reservoir is – to Saurashtra whose topography is like an inverted bowl.

There is the option of seawater. But desalination is even costlier. And so, the corporation is focusing on water recycling and reuse. But there is a problem even there – the lack of funds. To expand water coverage, the municipal corporation needs Rs 1,761 crores. But it does not have the money for this.

“Octroi was abolished in 2005,” said the municipal corporation official explaining how the corporation’s financial condition has weakened. “In 2007, property tax was done away with.” He said that some of the corporation’s losses were recouped due to the Jawaharlal Nehru National Urban Renewal Mission but the advantage of octroi and property tax was their untied nature. “Every city could choose how to use that money,” he said. “In contrast, these grants are tied funds.”

To make up the shortfall in revenue, the corporation is now applying for grants like the Centre’s Smart City programme and Amrut (the Jawaharlal Nehru National Urban Renewal Mission in a new avatar). But these grants are limited and come with caveats.

Said the municipal officer: “What we got from Amrut is Rs 293 crores. From Smart City, Rs 250 crores. Also, this money is only for capital expenses. How do I pay for operations and maintenance?”

These are puzzling contradictions. If Rajkot was not serious about fighting climate variability, it would not have taken the steps it did. At the same time, if it is alive to the risk of a changing climate, why is it not creating sustainable cities?

The answer may lie in analysing how Gujarat’s Urban Development Authorities function.

This is the first part of a two-part series.

  • Ear to the Ground

Dispatches from the states

  • Climate change
  • climate vulnerability
  • डाउन टू अर्थ
  • Print Edition

Logo

  • Agriculture
  • Data Centre
  • Young Environmentalist
  • Newsletters

Climate change in India: Gujarat faces problem of plenty

Khan Mohammed Abdarman Member of Maldhari community in Banni says the decision to take up farming was difficult, but it had to be taken as he was unable to feed his cattle. It was the only way he could adapt to the sudden increase in rainfall in the arid Banni grasslands. (Credit: Ishan Kukreti)

Fifty five-year Khan Mohammed Abdarman is a proud Maldhari, one of India’s oldest pastoral communities that has lived a nomadic life in Gujarat’s arid Banni grassland for over 500 years. But in 2007, he decided to do the unthinkable—to settle down and do farming. “The decision was difficult, but it had to be taken as I was unable to feed my cattle, who we consider our family members,” says Abdarman, who today grows guar and jowar in 20 hectares. He says it was the only way he could adapt to the sudden increase in rainfall in the arid grassland, which is home to more than 40,000 Maldharis.

He explains that the increase in rainfall meant the grassland got taken over by Prosopis juliflora, an invasive species that was introduced in the area in the 1950s. The species, locally called gando baval, literally, the crazy growing tree, today covers almost 55 per cent of the grassland, spanning over 2,500 sq km. This has led to an acute shortage of fodder. Interestingly, the rains made the arid region conducive to farming.

“Traditionally, the region received rainfall every four years. Starting 2000, it has been raining almost every year,” says Pankaj Joshi, executive director of local non-profit Sehjeevan. Ovee Thorat, researcher with Bengaluru-based Ashoka Trust for Research in Ecology and Environ- ment (ATREE), says the last long dry spell in the region was seen between 1970 and 1980. Data with the Bhuj Metrological Observatory shows that the area today receives 1.4 times more rainfall than the average in 1991-2000.

While changing rain pattern sets the stage for agriculture, other factors pushed the Maldharis to bring the land under plough. “Around 2008, the forest department started to cut plots in the reserve to stop ingress of saline water from the neighbouring salt mash of Rann of Kachchh. The community viewed the move as a way to lay claim on the grassland over which they have traditional ownership,” says Thorat. The fear was further fuelled because the state government is yet to give community forest rights (CFR) to the Maldharis under the Forest Rights Act 2006, he says. The community, in 2012, filed for 47 CFR claims. Today, farming is being carried out in over 17,000 ha, which is roughly 7 per cent of the reserve.

The sudden surge in farming has divided the community. In May this year, Banni Breeders Association, a local organisation of Maldharis working to conserve the grassland, filed a petition in the National Green Tribunal against rampant farming. On July 11, the tribunal told the forest and revenue department to stop all agricultural activity in the grassland.

“We have been rearing cattle for generations. That is what we do. In the past five or six years, farming has become rampant. This is not good for community as we are not like the settled agriculturists,” says Salam Hasham Halepotra of Hodko village. He owns around 100 buffaloes. He says from being an area where resources was communally owned, people are staking individual claim on the grassland by converting those into agricultural lands. Last year, Misriyara panchayat in eastern Banni region asked the district collector to intervene and through a public meeting made the encroachers stop farming. “To save the farmlands, they started digging trenches around the field where our buffaloes would often fall and die. Our estimate is that the community was losing over 200 animals every year due to the trenches. So we had to stop it,” says Bhuddha Hazi Khamisha, sarpanch of the panchayat.

Farming is destroying not only the community, but also the ecology of the grassland. “Banni’s landscape, like any other ecologically sensitive area, has reached here through a long process of successive natural changes. Agriculture will tip the balance and reduce the nature’s ability to restore the land. Once ploughed, the soil is exposed to erosion due to the sea breeze. Over the time, only the lower alkaline soil layers will be left. Then nothing will grow here,” warns Joshi.

“The wind velocity during summer is very high in Banni. If the land is ploughed, the high rate of top soil erosion will lead to desertification,” says Vijay Kumar, director, Gujarat Institute of Desert Ecology.

(This article was first published in Down To Earth's October 16-31 print edition under the headline 'On a losing streak')

(This is the fifth article in a six-part series on climate change in India. Read the first  here , second  here , third  here  and fourth here )

Related Stories

IIHS Knowledge Gateway

  • PUBLICATIONS
  • PAPERS AND ARTICLES
  • BOOKS, BOOK CHAPTERS AND MONOGRAPHS
  • CONFERENCE PROCEEDINGS
  • POLICY PAPERS
  • POLICY BRIEFS
  • OPINION AND EDITORIAL
  • MAPS AND DATA

Climate change in Gujarat: A bar towards sustainable development

Stuti Haldar , Indira Dutta | 2016

Climate change in the 21st century has emerged as a burning issue on the global platform. It has profound effects on the lives and stability of ecosystems all across the globe. Gujarat is no exception to the ambush of this perilous phenomenon. It has been noticed that the sea levels are rising, temperatures are shooting up and seasonal cycles have been disrupted frequently due to climate change in Gujarat. On the economic and industrial front Gujarat has emerged as a winning horse among all Indian states. But when we estimate its progress on the scale of sustainable development Gujarat appears to be quite behind. With the growing consciousness of the world towards the global menace of climate change we are now marching from the Millennium Development Goals to the Sustainable Development Goals. The dynamic state of Gujarat also needs to fasten its seat belts and accelerate swiftly towards the target of Sustainable Development Goals. There is an utmost need for participatory and inclusive efforts to evade the surging ecological, economic and social crisis accruing to global warming. Gujarat today needs institutional reforms and policy reforms that can mitigate the far reaching and harsh blisters of climate change especially on the poorer and vulnerable spectrum of the society. The herculean task of achieving the target Sustainable Development Goals can only be met by Gujarat if we join forces regionally, nationally and globally against the menace of climate change.

Share this entry

  • Share on Facebook
  • Share on Twitter
  • Share on WhatsApp
  • Share on Pinterest
  • Share on LinkedIn
  • Share on Tumblr
  • Share on Vk
  • Share on Reddit
  • Share by Mail

climate change essay in gujarati pdf

Climate Change : પૃથ્વી પરનું પાણી ખતમ થઈ જશે? શું છે એનાં કારણો અને ઉપાય?

કેટલાક મહિના પહેલાંની વાત છે. ઓછા વરસાદ અને દુકાળના કારણે ઈરાનની નદીઓ સુકાઈ ગઈ. પાણીની અછતના કારણે આખા દેશમાં ઉગ્ર વિરોધપ્રદર્શનો થયાં હતાં.

2019ના વર્ષે, ભારતનાં સૌથી મોટાં શહેરોમાંના એક ચેન્નાઈમાં સર્જાયેલું પાણીસંકટ અખબારોમાં ચમક્યું હતું. એ સમયે ચર્ચા છેડાઈ હતી કે વધી રહેલા ઔદ્યોગિકીકરણ, શહેરીકરણ અને જળવાયુપરિવર્તનની અસર કેવી કેવી પાયમાલી સર્જી શકે છે.

2018માં ભયંકર દુકાળના કારણે દક્ષિણ આફ્રિકાના કૅપટાઉનમાં વ્યક્તિદીઠ દરરોજ 50 લીટર જ પાણીપુરવઠાની મર્યાદા અમલમાં મુકાઈ હતી.

ગત વર્ષોમાં કેવી રીતે બદલાયું ઈરાનનું ઉર્મિયા તળાવ

ઇમેજ સ્રોત, GOOGLE EARTH

વર્ષ 2014માં બ્રાઝિલમાં સાઓ પાઓલો અને ઑસ્ટ્રેલિયાના પર્થમાં પણ પાણીસંબંધિત સ્થિતિ કંઈક આવી જ હતી.

ઘણા સમય પહેલાંથી જળસંકટ માટે અયોગ્ય આયોજન, જળસ્રોતોમાં આવકની ઘટ અને જળવાયુપરિવર્તનને કારણભૂત ગણાવવામાં આવે છે. જોકે, આ સમસ્યા કે એનાં કારણો કંઈ નવાં નથી.

1980ના દાયકાથી દુનિયામાં પાણીના વપરાશનો દર પ્રતિવર્ષ લગભગ એક ટકા વધી રહ્યો છે અને લગભગ આ દર પ્રમાણે જ 2050 સુધી વપરાશ વધતો રહેવાનું અનુમાન છે.

જાણકારો માને છે કે ભવિષ્યમાં પાણીની માગ અને જળવાયુપરિવર્તનની અસર વધવાના કારણે જળસ્રોતો પરનું ભારણ ખૂબ જ વધશે.

તો પ્રશ્ન એ છે કે, શું ધરતી પરથી પાણી સમાપ્ત થઈ રહ્યું છે? આપણે જાણવાનો પ્રયાસ કરીએ કે આ સમસ્યાનો ઉકેલ શો હોઈ શકે.

  • ક્લાઇમેટ ચેન્જ શું છે અને આપણા માટે ખતરો કેમ? સમજો સરળ રીતે
  • COP26 શિખર પરિષદ શું છે અને આપણા માટે કેમ મહત્ત્વની છે?

line

એક બાજુ દુકાળ તો બીજી બાજુ પૂર

પાણીની અછતની સમસ્યા

ઇમેજ સ્રોત, pixelfusion3d

જેમ્સ ફૅમ્લિએટી સાસ્કાચેવાન યુનિવર્સિટીમાં ગ્લોબલ ઇન્સ્ટિટ્યૂટ ફૉર વૉટર સિક્યૉરિટીના કાર્યકારી નિર્દેશક છે. આની પહેલાં તેઓ કૅલિફોર્નિયામાં નાસામાં જળવૈજ્ઞાનિક હતા.

કૅલિફોર્નિયાનાં જંગલોમાં દર વર્ષે આગ લાગે છે; પણ, આશ્ચર્યની વાત એ છે કે શાકભાજી અને ફળોની બાબતે દેશની જરૂરિયાતનો એક તૃતીયાંશ ભાગ અહીં જ ઉગાડવામાં આવે છે.

જેમ્સે જણાવ્યું કે, "જો આપણે ખેતી માટેનાં પાણીની વાત કરીએ તો કદાચ દુનિયાના બધા ખેતીલાયક વિસ્તારોની સ્થિતિ કૅલિફોર્નિયા જેવી હશે."

"જ્યાં જે ઉગાડવામાં આવે છે એ માત્ર ત્યાંની જ નહીં, પરંતુ બીજા વિસ્તારોની જરૂરિયાત પણ પૂરી કરે છે. જ્યારે બીજા વિસ્તારો અહીંની ખેતી માટેની પાણીની જરૂરિયાત પૂરી પાડતા નથી. આ બિનટકાઉ રીત છે."

ક્લાઇમેટ ચેન્જ

ઇમેજ સ્રોત, REUTERS/AMANDA PEROBELLI

નાસાએ 2002માં મહત્ત્વનું ગ્રેસ મિશન શરૂ કર્યું હતું. 15 વર્ષ ચાલેલા આ મિશનમાં સેટેલાઇટ તસવીરો દ્વારા પૃથ્વી પરના જળસ્રોતોની સ્થિતિ અને જળવિતરણને સમજવાનો પ્રયત્ન થયો હતો.

જેમ્સ જણાવે છે કે, "ગ્રેસ મિશનમાં અમને ધરતીના બંને ગોળાર્ધોમાં એક વૈશ્વિક પૅટર્નની વિશે જાણવા મળ્યું."

"દુનિયાનો એ ભાગ જ્યાં ભરપૂર માત્રામાં પાણી છે તેનો પુરવઠો વધી રહ્યો છે, જ્યારે બીજા ભાગો શુષ્ક બનતા જાય છે. આ પૅટર્નમાં દેખાય છે કે જળપ્લાવિત વિસ્તારોમાં વારંવાર પૂર આવે છે અને શુષ્ક વિસ્તારોમાં દુકાળ પડે છે."

વૈશ્વિક સ્તરે સતત સુકાતા જતા જળસ્રોતો માટે ગ્લોબલ વૉર્મિંગ અને ખેતી એ મુખ્ય ભાગ ભજવે છે, પરંતુ એ માટે બીજાં કારણો પણ છે.

  • ક્લાયમેટ ચેન્જ : પર્યાવરણની એ સમસ્યાઓ જેને માણસજાત પહોંચી વળી

શહેરીકરણનો વધતો જતો વિસ્તાર

પાણી લઈ જતાં મહિલા

ઇમેજ સ્રોત, Atul Loke/Getty

દુનિયાની કુલ વસ્તીમાંથી 17.5 ટકા ભારતમાં રહે છે, પણ અહીં ધરતીનો તાજાં પાણીનો સ્રોત માત્ર ચાર ટકા જ છે.

સમ્રાટ બસાક વર્લ્ડ રિસોર્સિસ ઇન્સ્ટિટ્યૂટમાં ભારતના શહેરી જળ કાર્યક્રમના નિર્દેશક છે.

તેઓ જણાવે છે કે તાજેતરનાં વરસોમાં જે ઝડપે લોકોની આવક વધી છે, એટલી જ ઝડપે પાણીની માગ પણ વધી છે.

તેમણે જણાવ્યું કે, "લોકો ઍરકંડિશનર, ફ્રિજ, વૉશિંગ મશીન જેવાં ઉપકરણો વધારે ખરીદે છે."

"દેશમાં વીજળીની કુલ જરૂરિયાતના 65 ટકાથી પણ વધારે વીજળી થર્મલ પાવરપ્લાન્ટ્સ દ્વારા મળે છે અને એમાં પાણીનો અધિકતમ ઉપયોગ થાય છે; અને જો વીજળીનો ઉપયોગ વધારે થાય તો એના ઉત્પાદન માટે પાણીની માગ પણ એટલી જ વધશે."

સમ્રાટ જણાવે છે કે આવક વધવાની સાથે લોકોની ખાનપાનની ટેવો બદલાય છે. પ્રોસેસ્ડ ફૂડનો વપરાશ વધ્યો છે અને પહેલાંની સરખામણીએ પાણીની જરૂરિયાત વધી છે.

આ ઉપરાંત શહેરીકરણનો વધતો વ્યાપ અને વરસાદી પાણી વહી જવું એ પણ મોટી સમસ્યા છે. દેશમાં પીવાના પાણીની જરૂરિયાતના 85 ટકા પાણી ભૂગર્ભમાંથી પ્રાપ્ત થાય છે.

સમ્રાટ જણાવે છે કે, "શહેરીકરણની રીત બદલાઈ રહી છે. જમીન પર કૉન્ક્રિટની ચાદર પથરાઈ રહી છે, જેનાથી જમીનની સપાટી સખત અને અભેદ્ય બની રહી છે."

"આ ઉપરાંત, જંગલો કાપીને પણ જમીનને નક્કર બનાવાય છે. એનાથી જમીન પાણી શોષી શકતી નથી અને તેથી, વરસાદનું પાણી કુદરતી વ્યવસ્થા પ્રમાણે સંગ્રહ થવાના બદલે વહી જાય છે."

દેશનાં લગભગ 79 ટકા ઘરમાં પીવાના પાણીના નળની સગવડ પહોંચી નથી. ઘણા વિસ્તારોમાં લોકોને પીવાનું પાણી ખરીદવું પડે છે. પ્રદૂષિત પાણીના કારણે દેશમાં દર વરસે લગભગ બે લાખ લોકોનાં મૃત્યુ થાય છે અને હજારો લોકો બીમાર પડે છે.

પાણી

ઇમેજ સ્રોત, REUTERS/GUGLIELMO MANGIAPANE

જળસંકટની અસર પરિવારો પર તો પડે જ છે, સાથોસાથ સમાજ પર પણ પડે છે.

સમ્રાટ જણાવે છે કે, "જળસંકટ વ્યક્તિને ક્યારેય બહાર ન નીકળી શકાય એવી ગરીબીની દારુણ અવસ્થામાં ધકેલે છે અને સમાજમાં અસમાનતા વધારે છે."

"સામાજિક અને આર્થિક રીતે પછાત લોકો પાણી માટે વધારે ખર્ચ કરી શકતા નથી. એની અસર એમના સ્વાસ્થ્ય પર પડે છે અને તેઓ દુષ્ચક્રમાં ફસાતા જાય છે."

કૅલિફોર્નિયા અને ભારતમાં જે કંઈ થઈ રહ્યું છે, એ દુનિયાના બીજા કેટલાય ભાગોની પણ હકીકત છે. પણ શું આપણે એમ કહી શકીએ એમ છીએ કે પૃથ્વી પરનું પાણી ખતમ થઈ રહ્યું છે?

  • ક્લાયમેટ ચેન્જ : એ ચાર વસ્તુ જેના થકી તમે કાર્બન ઉત્સર્જન ઘટાડી શકો છો

જરૂરિયાત અને ઉપયોગ

પાણી માટે કરેલી વ્યવસ્થા

કૅટ બ્રાઉમૅન યુનિવર્સિટી ઑફ મિનેસાટામાં ગ્લોબલ વૉટર ઇનિશિયેટિવનાં લીડ આસિસ્ટન્ટ છે. તેમણે કહ્યું કે વાસ્તવિક સમસ્યા પાણીની અછતની નથી, બલકે એની જરૂરિયાત અને પ્રાપ્યતાની છે.

તેમણે જણાવ્યું, "આપણે જાણીએ છીએ કે જળવાયુપરિવર્તનના લીધે પૂર વધારે આવશે અને દુકાળ પણ પડશે. આમ જોઈએ તો ધરતી પરનું પાણી ઓછું નથી થયું; પણ આપણને ત્યારે વધારે પાણી મળે છે, જ્યારે એની જરૂર નથી હોતી, અને જ્યાં એની જરૂર છે, ત્યાં એ મળતું નથી."

કૅટ સમ્રાટ બસાકની એ વાત સાથે સંમત છે કે શહેરીકરણના કારણે વરસાદી પાણી હવે જમીનના તળમાં નથી ઊતરતું.

જોકે, તેઓ એમ કહે છે કે આ માત્ર પુરવઠાની વાત છે, જ્યારે અછતનાં કારણો બીજાં જ છે.

તેમણે જણાવ્યું કે, "સંકટનું એક મોટું કારણ પાણીના ઉપયોગ સાથે સંકળાયેલું છે. આપણે ધરતી પર ઉપલબ્ધ પાણીના હિસાબે એનો ઉપયોગ કરવાનું શીખ્યા નથી અને જ્યારે આપણે એમ કહીએ છીએ કે પાણી ખલાસ થઈ રહ્યું છે; ત્યારે, ખરેખર તો આપણે એમ કહીએ છીએ કે આપણે પાણીનો જેટલા ઉપયોગ કરવા માગીએ છીએ તેટલો થઈ શકતો નથી."

આ લેખમાં Google YouTube દ્વારા પૂરું પાડવામાં આવેલું કન્ટેન્ટ છે. કંઈ પણ લોડ થાય તે પહેલાં અમે તમારી મંજૂરી માટે પૂછીએ છીએ કારણ કે તેઓ કૂકીઝ અને અન્ય તકનીકોનો ઉપયોગ કરી શકે છે. તમે સ્વીકારતા પહેલાં Google YouTube કૂકીઝ નીતિ અને ગોપનીયતાની નીતિ વાંચી શકો છો. આ સામગ્રી જોવા માટે 'સ્વીકારો અને ચાલુ રાખો'ના વિકલ્પને પસંદ કરો.

YouTube કન્ટેન્ટ પૂર્ણ, 1

આ કન્ટેન્ટ ઉપલબ્ધ નથી

કૅટ એમ કહે છે કે પાણીનો કેવો ઉપયોગ થાય છે, એના પર ઘણું બધું નિર્ભર છે. દાખલા તરીકે, ખેતર મોટું છે તો બાષ્પીભવન વધારે થશે, ઘરમાં ઉપયોગમાં લીધેલું પાણી ફેંકી દેવાય તો વહી જશે. આનાથી જળચક્ર તો ચાલતું રહેશે પણ એનાથી ના તો ભૂ-જળસ્તર વધશે કે ના તો આગળ જતાં વપરાશી પાણી ઉપલબ્ધ રહેશે.

તેમણે જણાવ્યું કે, "પ્રદૂષણ પણ એક સમસ્યા છે. માનો કે પાણી છે; પણ ઉપયોગ કરવા લાયક નથી, તો એ તો ન હોવા બરાબર ગણાય."

"પાણી સુધી પહોંચવા માટે માળખાકીય સુવિધાઓ પણ મહત્ત્વપૂર્ણ છે. પાણી કેટલું છે અને કયાં ઘરો સુધી પહોંચશે, એ નિર્ણયો જરૂરી હોય છે અને અભાવ પણ અસમાનતા ઊભી કરે છે."

કૅટ માને છે કે ભવિષ્યમાં, ધરતી પરનું પાણી કદાચ ખલાસ ન થાય, પણ વસતીવધારાના કારણે પડકારો વધશે એ નક્કી.

  • ક્લાઇમેટ ચેન્જ : ભારતે કેવાં વચનો આપ્યા હતાં અને તેમાંથી કેટલાં પૂરાં કર્યાં?

સમસ્યાનો સામનો કઈ રીતે કરીએ

પાણી

ઇમેજ સ્રોત, EPA/YAHYA ARHAB

ડેનિયલ શેમી ધ નેચર કન્ઝર્વન્સીમાં રિજિલેઅન્ટ વૉટરશેડ સ્ટ્રેટેજી નિર્દેશક છે. તેઓ જણાવે છે કે જળસંકટનો સામનો કરવાની શરૂઆત ખેતીથી થવી જોઈએ.

તેમણે જણાવ્યું કે, "કઈ જગ્યાએ, શેની ખેતી થઈ રહી છે, એમાં સમજણનો અભાવ છે. આપણે શીખવું પડશે કે પાણીનો યોગ્ય ઉપયોગ કરીને ક્યાં કેવા પ્રકારની ખેતી કરી શકાય એમ છે. એના માટે આપણે વિશેષજ્ઞોની મદદ લઈ શકીએ."

જોકે એ અલગ મુદ્દો છે કે એના માટે આપણે કેટલા તૈયાર છીએ. ડેનિયલે જણાવ્યું કે જળપ્રદૂષણનો સામનો કરવા આપણે તૈયાર છીએ.

તેમણે કહ્યું કે મોટા ભાગના મામલામાં એ સરકારની જવાબદારી હોય છે અને એના માટે તે ઉદ્યોગોને ફરજ પાડે છે, પણ જળસંશોધન ખર્ચાળ કામ છે અને એ જ મોટી અડચણ છે.

એક સવાલ એ પણ છે કે શું આપણે સમુદ્રનું પાણી પીવાલાયક ન બનાવી શકીએ?

ડેનિયલે જણાવ્યું કે, "એ દિલચસ્પ તકનીક જરૂર છે, પણ આજની તારીખે ખારા પાણીમાંથી મીઠું (સૉલ્ટ) છૂટું પાડવાની પ્રક્રિયા ખૂબ મોંઘી છે; એટલું જ નહીં પણ ઊર્જાના વપરાશની દૃષ્ટિએ પણ યોગ્ય નથી, ખાસ કરીને ત્યારે જ્યારે ઊર્જાસંકટ મોટો મુદ્દો છે."

અહીં એક સવાલ એ પણ છે કે આ પ્રક્રિયામાં જે મીઠું (સૉલ્ટ) બનશે એનું શું કરાશે? એને ના તો જમીન પર ફેંકી શકાય અને ના તો સમુદ્રમાં. તો પછી જળસંકટનો સામનો કરીશું કઈ રીતે?

ડેનિયલે જણાવ્યું કે, "બાગ-બગીચા અને શહેરો-ગામડાઓમાં મોજૂદ હરિયાળીવાળા વિસ્તારોમાં એની સંભાવના છે. એ વિસ્તારો સ્પંજની જેમ કામ કરે છે, એટલે કે જો આપણે કૉન્ક્રિટથી હટીને વધારેમાં વધારે એવી જમીનો તૈયાર કરીએ કે જે પાણી શોષી શકે તો વરસાદનું પાણી નકામું વહી નહીં જાય અને ભૂ-જળસ્તર વધશે."

પણ, શું આપણે પ્રયત્નો દ્વારા નીચે ઊતરી રહેલા ભૂ-જળસ્તરની સ્થિતિને સુધારી શકીએ?

  • COP26 : વડા પ્રધાન નરેન્દ્ર મોદી માટે ગ્લાસગો કૉન્ફરન્સ શા માટે મહત્ત્વની છે?

થોડા પ્રયત્નો, મોટું પરિવર્તન

પાણી

ઇમેજ સ્રોત, Getty Images

તરુણ ભારત સંઘના ચૅરમૅન રાજેન્દ્રસિંહ છેલ્લાં ચાળીસ વરસોથી રાજસ્થાનની ઉજ્જડ જમીનને હરિયાળી બનાવવાનું કામ કરે છે, એમને વૉટરમૅન ઑફ ઇન્ડિયાના નામે ઓળખવામાં આવે છે.

તેમણે કહ્યું કે, ધરતીનું પાણી ખતમ નથી થઈ રહ્યું, બલકે એનું અતિક્રમણ, પ્રદૂષણ અને શોષણ વધી રહ્યું છે.

તેમણે કહ્યું કે, "પાણીનો જે પ્રશ્ન છે એને આધુનિક શિક્ષણે વધારે ગંભીર બનાવ્યો છે. આધુનિક શિક્ષણમાં આપણી ટેક્‌નોલૉજી અને એન્જિનિયરિંગ પ્રાકૃતિક સંસાધનોના વધુમાં વધુ ઉપયોગને વિકાસનો માપદંડ માને છે."

"આ માપદંડ આપણા માટે ખતરનાક છે. આ શિક્ષણને કારણે લોકો 300 ફૂટથી માંડીને 2000 ફૂટ સુધીનાં ઊંડાં ભૂજળને કાઢી રહ્યા છે."

દુનિયાભરમાં ભૂજળનો જેટલો ઉપયોગ થાય છે, એના 25 ટકા એકલા ભારતમાં થાય છે; અને આ બાબતમાં ભારત ચીન અને અમેરિકા કરતાં આગળ છે.

રાજેન્દ્રસિંહે જણાવ્યું કે પાણીનું સંકટ સમુદાયો વચ્ચે માત્ર એક જુદા પ્રકારનો તણાવ નથી જન્માવતું, બલકે પડકારો પણ ઊભા કરે છે.

તેમણે કહ્યું કે, "પાણીની અછતને કારણે આખી દુનિયામાં વિસ્થાપન વધી રહ્યું છે. એ કારણે જે લોકો એક જગ્યાએથી બીજી જગ્યાએ જાય છે એમને ક્લાયમેટ રૅફ્યૂજી કહેવાય છે."

"જળસંકટ થર્ડ વર્લ્ડ વૉટર વૉરને નિમંત્રણ આપી રહ્યું છે. એટલા માટે એક તરફ આપણે પાણીના ઉપયોગની આવડત વધારવાની જરૂર છે, તો બીજી બાજુ જળસંરક્ષણ કરવાની અને જળ પરના સમુદાયોના અધિકાર જાળવી રાખવાની જરૂર છે."

"પાણી પરના લોકોના અધિકાર માટે ઉદ્યોગો સૌથી મોટું જોખમ છે અને એ સૌથી મોટો પડકાર છે."

રાજેન્દ્રસિંહ માને છે કે જો જળસંકટની સમસ્યા નિવારી શકાય તો જળવાયુપરિવર્તનને વધતું અટકાવી શકાય એમ છે.

તેમણે જણાવ્યું કે, "ચાળીસ વર્ષનો મારો અનુભવ મને એમ કહેવા પ્રેરે છે કે જળ જ જળવાયુ છે અને જળવાયુ જ જળ છે."

"જો દુનિયાને ગ્લોબલ વૉર્મિંગ અને જળવાયુપ્રદૂષણથી બચાવવી હોય તો આપણે પાણીની યોગ્ય વ્યવસ્થા કરવી પડશે, હરિયાળી વધારવી પડશે અને પાણીના કારણે ઇરોઝન અને સિલ્ટિંગનો પણ સામનો કરવો પડશે; ત્યારે જ આપણી પ્રક્રિયા ઝડપી થશે."

  • અનાજ, શાકભાજીની કિંમતો કાબૂમાં આવશે કે મોંઘવારી સાથે જીવવાની ટેવ પાડવી પડશે?

તો પછી, શું જળ-સંરક્ષણ માટે આપણને મોટી પરિયોજનાઓની જરૂર છે?

ક્લાઇમેટ ચેન્જ

રાજેન્દ્રસિંહ જણાવે છે કે, "નાનાં-નાનાં વધારે કામ મળીને મોટું પરિવર્તન લાવે છે. મોટા બંધોની શરૂઆત વિસ્થાપનથી જ થાય છે. નાની પરિયોજનાઓમાં એવું નથી થતું. 11,800 નાની પરિયોજનાઓ 10,600 વર્ગ કિલોમીટરના વિસ્તારમાં પર્યાવરણને હરિયાળું કરી શકે છે, જે એક મોટો બંધ નથી કરી શકતો."

એક અંદાજ અનુસાર, 2050 સુધીમાં દુનિયાની અડધી વસ્તી એવા વિસ્તારોમાં રહેતી હશે, જ્યાં જળસંકટ હશે. એ સમયે દુનિયાનાં 36 ટકા શહેરોમાં પાણીની અછત હશે.

જળવાયુપરિવર્તન, નબળી વ્યવસ્થા, જળસ્રોતોની ઘટતી સંખ્યા અને સંગ્રહનો અભાવ - કોઈ ને કોઈ સ્તરે આ બધાં કારણો પાણીની સમસ્યા માટે જવાબદાર છે. પરંતુ જાણકારો કહે છે એમ પ્રશ્ન પાણીના ખતમ થઈ જવાનો નથી, બલકે એની સાથે માણસોનો સંબંધ પૂરો થવાનો છે.

સમસ્યાનું સમાધાન તો છે, પણ એના માટે આપણે આપણી રીતરસમો બદલવી પડશે અને એક વાર ફરી પાણીના ઉપયોગ વિશે વિચારવું પડશે, જેથી ભવિષ્યમાં દરેક વ્યક્તિ માટે, દરેક જગ્યાએ જરૂરિયાત મુજબનું પાણી ઉપલબ્ધ હોય.

નહીં તો, જેવું બેન્જામિન ફ્રૅન્કલિને કહ્યું હતું - પાણીનું મહત્ત્વ આપણે ત્યારે સમજીશું, જ્યારે કૂવા સુકાઈ જશે.

( પ્રોડ્યૂસર - માનસી દાશ )

કોરોના વાઇરસ ફર્નિચર

  • કોરોના વાઇરસની દવા મળી, જે બચાવી રહી છે લોકોના જીવ
  • કોરોના વાઇરસનાં લક્ષણો શું છે અને કેવી રીતે બચી શકાય?
  • કોરોના વાઇરસ દૂધની થેલી અને શાકભાજી પર કેટલું જીવે છે?
  • કોરોના વાઇરસનો ચેપ આખરે કયા પશુમાંથી ફેલાયો?

લાઇન

YouTube કન્ટેન્ટ પૂર્ણ, 2

તમે અમને ફેસબુક , ઇન્સ્ટાગ્રામ , યૂટ્યૂબ અને ટ્વિટર પર ફોલો કરી શકો છો

પશ્ચિમ ઉત્તર પ્રદેશમાં બાળકોના જાતીય શોષણનો મામલો, આરોપી લાંબા સમય સુધી કેવી રીતે બચતો રહ્યો?

આઈસી 814 : કંદહાર અપહરણકાંડ પર આધારીત અનુભવ સિન્હાની નૅટફ્લિક્સ વેબસિરીઝ પર કયો વિવાદ થયો, ઇઝરાયલના વડા પ્રધાન નેતન્યાહૂએ શા માટે માગી માફી, બીજી તરફ હમાસે કઈ નવી ધમકી આપી, બીબીસી વિશેષ.

નુસરત તબસ્સુમ વિદ્યાર્થી આંદોલનમાં નેતૃત્વ કરી રહ્યાં હતાં

બાંગ્લાદેશમાં શેખ હસીના સરકારને હચમચાવી દેનારા વિદ્યાર્થીઓ હવે શું કરી રહ્યા છે

પાકિસ્તાન, અહમદિયા મુસ્લિમો, નેપાળ, બીબીસી ગુજરાતી

પાકિસ્તાનના અહમદિયા મુસલમાનો જીવ બચાવીને નેપાળ ભાગ્યાં પણ છતાં કેમ ડરી રહ્યાં છે?

કેટલાક રાજ્યોમાં આરોપીના ઘરોને બુલડોઝર ચલાવવાનાં મામલાઓ જોવા મળ્યાં છે

'બુલડોઝર ઍક્શન' પર સુપ્રીમ કોર્ટનું કડક વલણ, યોગી આદિત્યનાથની સરકારનો શો જવાબ છે

અફઘાનિસ્તાન, મહિલાઓ, ગર્ભવતી, બાળકો

'મને ડર છે કે મારું સંતાન ગર્ભમાં જ મૃત્યુ પામશે', તાલિબાનના શાસનમાં સગર્ભા મહિલાની કરૂણ કહાણી

હરિયાણા, ચરખી દાદરી, હિંસા, મુસ્લિમ, બીબીસી ગુજરાતી

હરિયાણામાં ગોમાંસ લઈ જવાની શંકાને કારણે બંગાળના એક યુવકની માર મારીને હત્યા, શું છે મામલો?

શેખ હસીના, બાંગ્લાદેશ, અસંમતિનો સૂર, ટીકાકારો, અત્યાચાર, માનવઅઘિકાર, બીબીસી ગુજરાતી

બાંગ્લાદેશમાં શેખ હસીનાના શાસનમાં વિરોધીઓને જેલમાં ગોંધીને કેવો જુલમ ગુજારવામાં આવતો હતો

વૃદ્ધ સાથે મારપીટનો વીડિયો સોશિયલ મીડિયા પર વાઇરલ થયો છે

ટ્રેનમાં ગોમાંસ લઈ જવાની શંકાને કારણે મુસ્લિમ વૃદ્ધ સાથે મારપીટ, શું છે સમગ્ર મામલો?

ઇઝરાયલ, પેલેસ્ટાઇન, ગાઝા, યુદ્ધ, મધ્યપૂર્વ, બીબીસી ગુજરાતી

યુદ્ધની આડશે ઇઝરાયલીઓ કઈ રીતે પેલેસ્ટાઇનિયનોની જમીન પર કબજો કરી રહ્યા છે?

ટૂરિસ્ટ વીઝા પર કૅનેડા ગયેલા લોકો હવે વર્ક પરમિટ માટે અરજી કરી શકશે નહીં

કૅનેડા : ટેમ્પરરી વર્ક પરમિટ અંગેનો એ નિર્ણય જે ગુજરાતીઓની મુશ્કેલી વધારી દેશે

સૌથી વધારે વંચાયેલા સમાચાર.

  • 1 ગુજરાત તરફ આવતી સિસ્ટમ ક્યાં પહોંચી અને હવે કયા જિલ્લામાં વધશે વરસાદ, આજે ક્યાં પડશે અતિભારે વરસાદ?
  • 2 સેક્સ કરવાની મહિલા અને પુરુષને ક્યારે ઇચ્છા ન થાય? ચાર કારણ જાણો લાસ્ટ અપડેટ: 17 જાન્યુઆરી 2024
  • 3 કબૂતરની ચરકમાં એવું શું છે જે માણસનાં ફેફસાંને નુકસાન કરી શકે? કેવી રીતે બચી શકાય? લાસ્ટ અપડેટ: 1 ઑક્ટોબર 2023
  • 4 ભાવનગરના મહારાજા કૃષ્ણકુમારસિંહની કહાણી, 'હું તો જાગતો હતો અને 900 ગામનું રાજ જતું રહ્યું' લાસ્ટ અપડેટ: 6 મે 2024
  • 5 'બુલડોઝર ઍક્શન' પર સુપ્રીમ કોર્ટનું કડક વલણ, યોગી આદિત્યનાથની સરકારનો શો જવાબ છે
  • 6 એ સેક્સ સ્કૅન્ડલ જેમાં ‘ઍક્ઝામ પેપર અને લગ્નની લાલચ’માં યુવતીઓના વીડિયો બનાવીને તેમને ઠગવામાં આવી લાસ્ટ અપડેટ: 19 નવેમ્બર 2023
  • 7 કચ્છના ખારાઈ ઊંટપાલકોની કહાણી, ‘તરતાં ઊંટોનો ચારો ઘટી રહ્યો છે, મારે વેચીને બીજો ધંધો શરૂ કરવો છે’
  • 8 બટેટાંની નવી જાત જેના પર દુષ્કાળની અસર નહીં થાય
  • 9 આઈસી 814 : કંદહાર અપહરણકાંડ પર આધારીત અનુભવ સિન્હાની નૅટફ્લિક્સ વેબસિરીઝ પર કયો વિવાદ થયો
  • 10 'એક લડકી કો દેખા તો ઐસા લગા' જેવી અસલ જિંદગીની કહાણી લાસ્ટ અપડેટ: 8 ફેબ્રુઆરી 2019

Mendeley

The Author ensures that the research has been conducted responsibly and ethically with adherence to all relevant regulations. read more..

  • Plagarism Policy
  • Peer Review Process
  • Article Publishing Charges
  • Grant Cover Letter

Join as Editor

Join as Associate Editor

  • Join as Reviewer
  • Manuscript Guidelines

climate change essay in gujarati pdf

  •   EAES Home
  •   Editorial Board
  •   Archive

Environmental Analysis & Ecology Studies

Coastal Communities and Climate Change: A Case Study in Gujarat, India

Anil Kumar Roy*

CEPT University, India

*Corresponding author: Anil Kumar Roy, CEPT University, Kasturbhai Lalbhai Campus, Navrangpura, Ahmedabad, Gujarat-380009, India

Submission: January 25, 2018; Published: April 03, 2018

DOI: 10.31031/EAES.2018.02.000527

climate change essay in gujarati pdf

ISSN 2578-0336 Volume2 Issue1

  • Introduction
  • Climate Change Challenges In India
  • Jamnagar City Region-Perceptions and Preparedness for Climate Change
  • Climate Change Challenges to Coastal Communities: Perceived Vulnerability, Risk and Coping Mechanism

Developing countries are highly vulnerable to climate change [1,2]. They have less coping capacity to deal with its negative impacts. India is one of the most vulnerable countries in South Asia. It urgently requires adaptation and mitigation measures to cope with possible impacts arising from extreme weather events due to climate change. Indian cities, particularly the coastal ones, are at a comparatively greater risk as their population is likely to grow rapidly and may reach 500 million over the next 50 years [3]. The assessment of climate change impacts and adaptability both at the macro region and micro levels is necessary to create effective mitigation policies [4,5].

Figure 1: Location of Jamnagar city.

climate change essay in gujarati pdf

According to the India Disaster Knowledge Network, 12 percent of the total land mass of India is flood prone and 68 percent of the arable land is vulnerable to drought. The climate variability along India’s coast and resultant sea-level rise will eventually have a tremendous socio-economic impact on local communities and their livelihood. Risks in Indian coastal cities are associated more with intrinsic vulnerability rather than external exposure to hazards. These areas are also experiencing rapid population growth and are likely to face greater climate change challenges. The case of Jamnagar City Region of Gujarat Coast in Gulf of Kutch, India shows the extent of vulnerability, exposure and perceptive challenges of climate change both at local level and at the household of coastal communities of farmers and fishermen Figure 1 for the location of Jamnagar City.

The analysis of climate variables reveals an increasing trend in the annual mean temperature observed for a period of 40 years during 1969 and 2009 in Jamnagar City-region (Figure 2). The average yearly rainfall does not confirm to the declining trends. However, there has been a declining trend in the number of rainy days per year during the 50 years between 1955 and 2004 (Figure 3). This has resulted in the greater occurrence of droughts and floods in the region, leading to loss of life and property. Prime stakeholders of Jamnagar city face challenges such as scarcity of drinking water supply at sources, salinity ingress from the ocean, frequent flooding in the low lying areas (particularly slums) and high incidence of natural and manmade hazards. The stakeholders have these local priorities to tackle as far as urban planning is concerned, while national and state level climate change priorities are concerned with reduction of Green House Gases (GHGs) and preparation of new energy policy.

Figure 2: Annual mean temperature of Jamnagar city region- 1969-2009, Source: IMD, Pune for various years from 1969 to 2009.

climate change essay in gujarati pdf

Figure 3: Number of rainy days in a year, Jamnagar city region-1955 to 2004, Source: IMD, Pune for various years from 1955to 2004.

climate change essay in gujarati pdf

A survey of 100 households each from two coastal communities engaged in agriculture and fishing activities reveals that they are highly exposed to climate change impacts and are more sensitive towards extreme weather events such as droughts, floods, cyclones and salinity ingress. However, they have poor awareness of climate change impacts. They reported a change in their crop calendar due to the shifting nature of cropping season. This has resulted in reducing the desired yields of major crops. The fishing communities have reported decreasing tends in their fish catch throughout the year compared to a decade ago. The comparative assessment of the two communities shows that the fishing community is more vulnerable compared to agriculture community due to lack of awareness, the absence of social networks, use of low technology, lower socioeconomic status and greater dependency on coastal and marine resources for their livelihood.

Jamnagar city region, located in a coastal area, is vulnerable to climate change. The exposure and sensitivity to climate change variability of the city region have increased during the past 50 years. Climate variable in terms of rising temperature and reduction in a number of rainy days has resulted in greater exposure and sensitivity to climate change impacts. The adaptive capacity of the stakeholders is far from adequate, due to lack of awareness and general negligence regarding climate change. Community level vulnerability of those engaged in fishing and agricultural activities reveal higher exposure and sensitivity toward climate change variables, while their adaptive capacity is poor. It is evident that fishing community is comparatively more vulnerable to the climate change. The policy implications are clear. Local developmental priorities need to be considered while determining national and state level mitigation measures to mitigate climate change impacts. It works better when local communities are involved in climate change adaptation and mitigations measures. A study in Thailand shows that government policies are designed to mitigate climate change challenges faced by the farmers. However, it may take some time for the farmers to adapt to the new agriculture practices that combat climate change.

  • IFRC (2005) World disasters report, Geneva, Switzerland.
  • UNFCCC (2007) Climate Change: Impacts, vulnerabilities and adaptation in developing countries, United Nations Framework Convention on Climate Change (UNFCCC), p. 5.
  • Revi A (2008) Climate change risks: an adaptation and mitigation agenda for Indian cities, Environment & Urbanization 20(1): 207-229.
  • Satterthwaite D, Saleemul H, Mark P, Hannah R, Patricia LR (2007) Adapting to climate change in urban areas; the possibilities and constraints in low-and middle-income nations. Human Settlements Working Paper Series, London.
  • (2006) Review of international federation of redcross and red crescent societies recovery operations, IFRC.

© 2018 Anil Kumar Roy. This is an open access article distributed under the terms of the Creative Commons Attribution License , which permits unrestricted use, distribution, and build upon your work non-commercially.

Submit Query

Pubmed indexed articles.

  • Dendrimer-Based Nanomedicine (Paramagnetic Nanoparticle, Nanocombretastatin, Nanocurcumin) for Glioblastoma Multiforme Imaging and Therapy PMID: 35237758
  • Glioblastoma: Targeting Angiogenesis and Tyrosine Kinase Pathways PMID: 32924014
  • The Conflict in East Ukraine: A Growing Need for Addiction Research and Substance Use Intervention for Vulnerable Populations PMID: 32363331

Track Your Article

Editor in chief.

climate change essay in gujarati pdf

Hirotada TSUJII

Ph.D in Agriculture from Faculty of Agriculture, Tohoku University

Approaches in Poultry, Dairy & Veterinary Sciences

climate change essay in gujarati pdf

Maria Kuman

Research Professor, PhD, Holistic Research Institute

Advances in Complementary & Alternative Medicine

climate change essay in gujarati pdf

Tomasz Karski

MD PhD, Professor, Vincent Pol University

Orthopedic Research Online Journal

climate change essay in gujarati pdf

Jiexiong Feng

Professor, Chief Doctor, Director of Department of Pediatric Surgery, Associate Director of Department of Surgery, Doctoral Supervisor Tongji hospital, Tongji medical college, Huazhong University of Science and Technology

Research in Pediatrics & Neonatology

climate change essay in gujarati pdf

Muhammad Atiqullah

Senior Research Engineer and Professor, Center for Refining and Petrochemicals, Research Institute, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia

Research & Development in Material Science

climate change essay in gujarati pdf

Ian James Martins

Fellow of International Agency for Standards and Ratings (IASR), Edith Cowan University, Sarich Neuroscience Research Institute

Advancements in Case Studies

climate change essay in gujarati pdf

Thomas F George

Chancellor Emeritus / Professor Emeritus of Chemistry and Physics, University of Missouri–St. Louis

Annals of Chemical Science Research

climate change essay in gujarati pdf

Jose Crisologo de Sales Silva

Ph.D in Science from the Federal University of Alagoas, UFAL, Brazil

Novel Research in Sciences

climate change essay in gujarati pdf

Naglaa Sami Adbel Aziz Mahmoud

Assistant Professor in College of Architecture, Art and Design

Academic Journal of Engineering Studies

climate change essay in gujarati pdf

Tong-Ching Tom Wu

Interim Dean, College of Education and Health Sciences, Director of Biomechanics Laboratory, Sport Science Innovation Program, Bridgewater State University

Research & Investigations in Sports Medicine

climate change essay in gujarati pdf

Dr. Jose Luis Turabian

Professor of numerous training courses in Family Medicine

Associative Journal of Health Sciences

climate change essay in gujarati pdf

Dariusz Jacek Jakóbczak

Assistant Professor, Department of Electronics and Computer Science

COJ Electronics & Communications

climate change essay in gujarati pdf

Önder Pekcan

Emeritus Professor of Physics, Kadir Has University, Turkey

Polymer Science: Peer Review Journal

Latest News & Events

climate change essay in gujarati pdf

Signup for Newsletter

climate change essay in gujarati pdf

Quick Links

climate change essay in gujarati pdf

Refer a Friend

Suggested By

Referrer Details

climate change essay in gujarati pdf

Advertise With Us

Our recent edition.

climate change essay in gujarati pdf

Modern Concepts & Developments in Agronomy

climate change essay in gujarati pdf

Aspects in Mining & Mineral Science

Top Editors

climate change essay in gujarati pdf

Zhengcai Lou

Wenzhou Medical University, China

climate change essay in gujarati pdf

Fooyin University, Taiwan

climate change essay in gujarati pdf

Volkan Sarper Erikci

Saglik Bilimleri University, Turkey

climate change essay in gujarati pdf

Vincent Pol University, Poland

climate change essay in gujarati pdf

Thamil Selvam

National Defence University of Malaysia, Malaysia

climate change essay in gujarati pdf

Tarik Baykara

Dogus University, Turkey

climate change essay in gujarati pdf

Steven Smith

Hope College, USA

climate change essay in gujarati pdf

Stanislav Grigoriev

Russian Academy of Sciences, Russia

climate change essay in gujarati pdf

Southern Cross University, Australia

climate change essay in gujarati pdf

Shewikar Farrag

Umm Al-Qura University, Saudi Arabia

climate change essay in gujarati pdf

City University of New York, USA

climate change essay in gujarati pdf

Praveen K Maghelal

Khalifa University of Science & Technology, United Arab Emirates

climate change essay in gujarati pdf

Hebei Normal University, China

climate change essay in gujarati pdf

Nawal Mohamed Khalafallah

Alexandria University, Egypt

climate change essay in gujarati pdf

N K Kishore

Indian Institute of Technology Kharagpur, India

climate change essay in gujarati pdf

Muzzalupo Innocenzo

Council for Agriculture Research and Analysis of Agri Economy (CREA), Italy

climate change essay in gujarati pdf

King Fahd University of Petroleum and Minerals, Saudi Arabia

climate change essay in gujarati pdf

Mohamed A Rashed

King Abdulaziz University, Saudi Arabia

climate change essay in gujarati pdf

Maurice E Morgenstein

University of Oregon, USA

climate change essay in gujarati pdf

Martin Sweatman

University of Edinburgh, Scotland

climate change essay in gujarati pdf

University of Tennessee, USA

climate change essay in gujarati pdf

Manuel Velasco

Central University of Venezuela, Venezuela

climate change essay in gujarati pdf

Majid Monajjemi

Islamic Azad University Central Tehran Branch, Iran

climate change essay in gujarati pdf

Luisetto Mauro

Tourin University, Italy

climate change essay in gujarati pdf

Lloyd Arthur Jenkins

Teaching & Public Speaking, Spain

climate change essay in gujarati pdf

Leonardo Milella

Paeditric Hospital "Giovanni XXIII", Italy

climate change essay in gujarati pdf

Kanakis Dimitrios

University of Nicosia, Cyprus

climate change essay in gujarati pdf

Jose Luis Clua Espuny

Universidad Miguel Hernández de Elche, Spain

climate change essay in gujarati pdf

John Korstad

Oral Roberts University, USA

climate change essay in gujarati pdf

Jinliang Zhang

Beijing Normal University, China

climate change essay in gujarati pdf

Irina Koretsky

Howard University, USA

climate change essay in gujarati pdf

Edith Cowan University, Australia

climate change essay in gujarati pdf

Hamid Yahiya Hussain

Dubai Health Authority, UAE

climate change essay in gujarati pdf

Gundu HR Rao

University of Minnesota, USA

climate change essay in gujarati pdf

GP Karmakar

climate change essay in gujarati pdf

Ghassan George Haddad

Serhal Hospital, Lebanon

climate change essay in gujarati pdf

George Gregory Buttigieg

University of Malta, Malta

climate change essay in gujarati pdf

Fumihiko Hinoshita

National Center for Global Health and Medicine, Japan

climate change essay in gujarati pdf

Freida Pemberton

Molloy College, USA

climate change essay in gujarati pdf

Francisco Welington de Sousa Lima

Federal University of Piauí, Brazil

climate change essay in gujarati pdf

Florian Bert

Krankenhaus Nordwest Hospital, Germany

climate change essay in gujarati pdf

Fathi Habashi

Laval University, Canada

climate change essay in gujarati pdf

Dora Alicia Cortes Hernandez

Cinvestav-Unidad Saltillo, Mexico

climate change essay in gujarati pdf

Daniel Kinem

UPMC Hamot Neuroscience Institute, USA

climate change essay in gujarati pdf

Conxita Mestres Miralles

Ramon Llull University, Spain

climate change essay in gujarati pdf

Barry Kraynack

White Bear Associates, LLC, USA

climate change essay in gujarati pdf

Arkady S Voloshin

Lehigh University, USA

climate change essay in gujarati pdf

Alireza Heidari

California Southern University, USA

climate change essay in gujarati pdf

Alex Guskov

Institute of Solid State Physics of RAS, Russia

climate change essay in gujarati pdf

Alan Diego Briem Stamm

University of Buenos Aires, Argentina

climate change essay in gujarati pdf

Ahmed Nasr Ghanem

Mansoura University, Egypt

climate change essay in gujarati pdf

Afaf K El Ansary

King Saud University, Saudi Arabia

climate change essay in gujarati pdf

A Bernardes

University of Coimbra, Portugal

Financial Support

climate change essay in gujarati pdf

Latest e-Books

Latest video.

Creative Commons License

Advertisement

Advertisement

Review and synthesis of climate change studies in the Himalayan region

  • Published: 11 November 2021
  • Volume 24 , pages 10471–10502, ( 2022 )

Cite this article

climate change essay in gujarati pdf

  • Vikram S. Negi   ORCID: orcid.org/0000-0002-3380-7930 1 ,
  • Deep C. Tiwari 1 ,
  • Laxman Singh 1 ,
  • Shinny Thakur 1 &
  • Indra D. Bhatt 1  

3177 Accesses

15 Citations

30 Altmetric

Explore all metrics

There are a few regions in the world, where climate change impacts are more intense than other regions of the world, and Himalaya is the case. The Himalaya, one of the biodiversity hotspot regions and provider of ecosystem services to billion of people all across the world. Present study reviewed and synthesized climate change studies in the Himalayan region in general and Indian Himalayan region (IHR) in particular. Analysis of the literature indicates exponentially increase in climate change studies 2005 onward in the IHR, and maximum are from Jammu and Kashmir (105) followed by Uttarakhand (100) and Himachal Pradesh (77). Among the subject types, maximum climate change impact was studied on water resources/glacier retreat (141 studies) followed by agriculture (113) and forests/biodiversity (86). Increasing temperature, frequent drought spells, erratic rainfall and declining snowfall are commonly reported indicators of climate change. For instance, temperature is reported to increase by 1.5 °C in the Himalaya than an average increase of 0.74 °C globally in last century; however, it varied in eastern (0.1 °C per decade and western Himalayas (0.09 °C per decade. An increase in temperature between 0.28 and 0.80 °C per decade was reported for North-western Himalaya and 0.20–1.00 °C per decade for Eastern Himalaya. The higher altitude of Himalayan and Trans-Himalayan zone are reported to be warming at higher rates. Many of the glaciers were reported to be retreating in both eastern and western Himalaya. Heavy rainfall is becoming very common in the region often accompanied by cloudbursts that aggravate flood situation many times. Perception-based studies of the region reported to provide firsthand and detailed descriptions of climate change indicators and impacts from rural and remote areas, where no instrumental data are available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

climate change essay in gujarati pdf

Similar content being viewed by others

climate change essay in gujarati pdf

An overview of climate change and variability impact studies in Nigeria

climate change essay in gujarati pdf

Climate Change Implications in the Himalayas

climate change essay in gujarati pdf

Local Community Perception of Climate Change and Scientific Validation: A Review of Initiatives and Perspectives in the Indian Region

Adedeji, O. (2014). Global climate change. Journal of Geoscience and Environment Protection, 2 (02), 114.

Article   Google Scholar  

Adhikari, S., Gurung, A., Chauhan, R., Rijal, D., Dongol, B. S., Aryal, D., & Talchabhadel, R. (2021). Status of springs in mountain watershed of western Nepal. Water Policy, 23 (1), 142–156.

Agrawal, A., & Tayal, S. (2013). Assessment of volume change in East Rathong glacier, Eastern Himalaya. International Journal of Geoinformatics, 9 (1), 73–82.

Google Scholar  

Agrawal, A., Sharma, A. R., & Tayal, S. (2014). Assessment of regional climatic changes in the Eastern Himalayan region: A study using multi-satellite remote sensing data sets. Environmental Monitoring and Assessment, 186 (10), 6521–6536.

Article   CAS   Google Scholar  

Ahmed, M. & Suphachalasai, S. (2014). Assessing the costs of climate change and adaptation in South Asia, Asian Development Bank, Philippines.

Aich, V., Akhundzadah, N. A., Knuerr, A., Khoshbeen, A., Hattermann, F., Paeth, H., Scanlon, A., & Paton, E. (2017). Climate change in afghanistan deduced from reanalysis and coordinated regional climate downscaling experiment (CORDEX)—South Asia Simulations. Climate, 5 , 38.

Akhundzadah, N. A., Soltani, S., & Aich, V. (2020). Impacts of climate change on the water resources of the Kunduz River Basin, Afghanistan. Climate, 8 (10), 102.

Alexander JM, Kueffer C, Daehler CC, Edwards PJ, Pauchard A, Seipel T, Consortium M. (2011). Assembly of nonnative floras along elevational gradients explained by directional ecological filtering. Proceedings of the National Academy of Sciences, 108 (2), 656–661.

Ali, U., Wang, J., Ullah, A., Ishtiaque, A., Javed, T., & Nurgazina, Z. (2021). The impact of climate change on the economic perspectives of crop farming in Pakistan: Using the Ricardian model. Journal of Cleaner Production, 127219.

Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D. D., & Hogg, E. T. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259 (4), 660–684.

Allen, et al. (2018). Global warming of 1.5° C. An IPCC Special Report on the impacts of global warming of 1.5° C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Sustainable Development, and Efforts to Eradicate Poverty .

Ammer, C. (2019). Diversity and forest productivity in a changing climate. New Phytologist, 221 (1), 50–66.

Arrawatia, M.L., & Tambe, S. (2012). Climate Change in Sikkim: Patterns, Impacts and Initiatives. IPR Department, Government of Sikkim.

Azam, M. F., Wagnon, P., Vincent, C., Ramanathan, A. L., Favier, V., Mandal, A., & Pottakkal, J. G. (2014). Processes governing the mass balance of Chhota Shigri Glacier (western Himalaya, India) assessed by point-scale surface energy balance measurements. The Cryosphere, 8 (6), 2195–2217.

Bacha, M. S., Muhammad, M., Kılıç, Z., & Nafees, M. (2021). The dynamics of public perceptions and climate change in Swat Valley. Khyber Pakhtunkhwa. Pakistan. Sustainability, 13 (8), 4464.

Badola, H. K. (2010). Phenology and climate responses in Himalayan rhododendrons. Rhododendron, the, 50 , 17.

Bahuguna, I. M., Rathore, B. P., Brahmbhatt, R., Sharma, M., Dhar, S., Randhawa, S. S., Kumar, K., Romshoo, S., Shah, R. D., Ganjoo, R. K., & Ajai,. (2014). Are the Himalayan glaciers retreating? Current Science., 10 , 1008–1013.

Baker, B. B., & Moseley, R. K. (2007). Advancing treeline and retreating glaciers: Implications for conservation in Yunnan, PR China. Arctic, Antarctic, and Alpine Research., 39 (2), 200–209.

Bali, R., Agarwal, K. K., Ali, S. N., & Srivastava, P. (2011). Is the recessional pattern of Himalayan glaciers suggestive of anthropogenically induced global warming. Arabian Journal of Geosciences, 4 (7–8), 1087–1093.

Banerjee, A., Dimri, A. P., & Kumar, K. (2021). Temperature over the Himalayan foothill state of Uttarakhand: Present and future. Journal of Earth System Science, 130 (1), 1–14.

Barrett, K., & Bosak, K. (2018). The role of place in adapting to climate change: A case study from Ladakh, Western Himalayas. Sustainability, 10 (4), 898.

Basak, J. K., Titumir, R. A. M., & Dey, N. C. (2013). Climate change in Bangladesh: A historical analysis of temperature and rainfall data. Journal of Environment, 2 (2), 41–46.

Basannagari, B., & Kala, C. P. (2013). Climate change and apple farming in Indian Himalayas: A study of local perceptions and responses. PLoS One , 8 (10).

Basnett, S., Kulkarni, A. V., & Bolch, T. (2013). The influence of debris cover and glacial lakes on the recession of glaciers in Sikkim Himalaya, India. Journal of Glaciology , 59 (218), 1035–1046.

Basu, J. P. (2020). Climate change vulnerability and perception of different occupational groups of household in the hill regions of Darjeeling District, West Bengal. Indian Journal of Ecology, 47 (1), 248–258.

Becker, A., Inoue, S., Fischer, M., & Schwegler, B. (2012). Climate change impacts on international seaports: Knowledge, perceptions, and planning efforts among port administrators. Climatic Change, 110 (1–2), 5–29.

Bhagawati, R., Bhagawati, K., Jini, D., Alone, R. A., Singh, R., Chandra, A., Makdoh, B., Sen, A., & Shukla, K. K. (2017). Review on climate change and its impact on agriculture of Arunachal Pradesh in the Northeastern Himalayan region of India. Nature Environment and Pollution Technology, 16 (2), 535.

Bhambri, R., Bolch, T., & Chaujar, R. K. (2012). Frontal recession of Gangotri Glacier, Garhwal Himalayas, from 1965 to 2006, measured through high-resolution remote sensing data. Current Science, 102 (3), 489–494.

Bharali, S., & Khan, M.L. (2011). Climate change and its impact on biodiversity; some management options for mitigation in Arunachal Pradesh. Current Science , 855–860.

Bhatta, B., Shrestha, S., Shrestha, P. K., & Talchabhadel, R. (2019). Evaluation and application of a SWAT model to assess the climate change impact on the hydrology of the Himalayan River Basin. CATENA, 181 , 104082.

Bhutiyani, M. R., Kale, V. S., & Pawar, N. J. (2010). Climate change and the precipitation variations in the northwestern Himalaya: 1866–2006. International Journal of Climatology: A Journal of the Royal Meteorological Society, 30 (4), 535–548.

Bhutiyani, M. R., Kale, V. S., & Pawar, N. J. (2007). Long-term trends in maximum, minimum and mean annual air temperatures across the Northwestern Himalaya during the twentieth century. Climatic Change, 85 (1–2), 159–177.

Biswas, A., & Roy, M. (2015). Leveraging factors for sustained green consumption behavior based on consumption value perceptions: Testing the structural model. Journal of Cleaner Production, 95 , 332–340.

Böhner, J., & Lehmkuhl, F. (2005). Environmental change modelling for Central and High Asia: Pleistocene, present and future scenarios. Boreas, 34 (2), 220–231.

Burnham, M., Ma, Z., & Zhang, B. (2016). Making sense of climate change: Hybrid epistemologies, socio-natural assemblages and smallholder knowledge. Area, 48 (1), 18–26.

Byg, A., & Salick, J. (2009). Local perspectives on a global phenomenon—climate change in Eastern Tibetan villages. Global Environmental Change, 19 (2), 156–166.

Campbell, J. L., Rustad, L. E., Boyer, E. W., Christopher, S. F., Driscoll, C. T., Fernandez, I. J., & Ollinger, S. V. (2009). Consequences of climate change for biogeochemical cycling in forests of northeastern North America. Canadian Journal of Forest Research, 39 (2), 264–284.

Chakraborty, D., Saha, S., Singh, R. K., Sethy, B. K., Kumar, A., Saikia, U. S., Das, S. K., Makdoh, B., Borah, T. R., & Chanu, A. N. (2017). Spatio-temporal trends and change point detection in rainfall in different parts of North-eastern Indian states. Journal of Agrometeorology, 19 (2), 160–163.

Chand, P., & Sharma, M. C. (2016). Monitoring frontal changes of Shah Glacier in the Ravi basin, Himachal Himalaya (India) from 1965 to 2013. National Academy Science Letters, 39 (2), 109–114.

Chaudhry, S. H. I. V. A. J. I., & Tamang, L. A. K. P. A. (2007). Need of innovative approach for climate change studies in alpine region of India. Current Science , 93 (12), 1648–1649.

Chaudhary, P., & Bawa, K. S. (2011). Local perceptions of climate change validated by scientific evidence in the Himalayas. Biology Letters, 7 (5), 767–770.

Chaudhary, P., Rai, S., Wangdi, S., Mao, A., Rehman, N., Chettri, S., & Bawa, K. S. (2011). Consistency of local perceptions of climate change in the Kangchenjunga Himalaya landscape. Current Science , 504–513.

Chhogyel, N., & Kumar, L. (2018). Climate change and potential impacts on agriculture in Bhutan: A discussion of pertinent issues. Agriculture and Food Security, 7 , 79.

Choudhury, B. U., Das, A., Ngachan, S. V., Slong, A., Bordoloi, L. J., & Chowdhury, P. (2012). Trend analysis of long term weather variables in mid altitude Meghalaya, North-East India. Journal of Agricultural Physics, 12 (1), 12–22.

Chowdhury, A., Sharma, M. C., De Kumar, S., & Debnath, M. (2021). Glacier changes in the Chhombo Chhu Watershed of the Tista basin between 1975 and 2018, the Sikkim Himalaya, India. Earth System Science Data, 13 (6), 2923–2944.

Cruz, R. V., Harasawa, H., Lal, M., Wu, S., Anokhin, Y., Punsalmaa, B., Honda, Y., Jafara, M., Li, C., & Huu, N. N. (2007). Asia . Cambridge University Press.

Dad, J. M., Muslim, M., Rashid, I., & Reshi, Z. A. (2021). Time series analysis of climate variability and trends in Kashmir Himalaya. Ecological Indicators, 126 , 107690.

Das, T., & Das, A. K. (2013). Vegetative and reproductive phenology of some multipurpose tree species in the homegardens of Barak Valley, northeast India. International Journal of Biometeorology, 57 (1), 185–196.

Dash, S. K., Jenamani, R. K., Kalsi, S. R., & Panda, S. K. (2007). Some evidence of climate change in twentieth-century India. Climatic Change, 85 (3–4), 299–321.

De, U. K., Pal, M., & Bodosa, K. (2013). Global warming and the pattern of overall climate changes in Sub-Himalayan Assam Region of North-East India. International Journal of Ecological Economics and Statistics, 36 (3), 88–105.

Deka, R. L., Mahanta, C., Pathak, H., Nath, K. K., & Das, S. (2013). Trends and fluctuations of rainfall regime in the Brahmaputra and Barak basins of Assam, India. Theoretical and Applied Climatology, 114 (1–2), 61–71.

Devi, A. F., & Garkoti, S. C. (2013). Variation in evergreen and deciduous species leaf phenology in Assam, India. Trees, 27 (4), 985–997.

Devkota, R. P., Pandey, V. P., Bhattarai, U., Shrestha, H., Adhikari, S., & Dulal, K. N. (2017). Climate change and adaptation strategies in Budhi Gandaki River Basin, Nepal: A perception-based analysis. Climatic Change, 140 (2), 195–208.

Dey, T., Pala, N. A., Shukla, G., Pal, P. K., Das, G., & Chakarvarty, S. (2017). Climate change perceptions and response strategies of forest fringe communities in Indian Eastern Himalaya. Environment, Development and Sustainability, 20 (2), 925–938.

Dilip, N. C., & Mwchahary Dimacha, D. (2012). A study on temporal variation and trends of temperature in Kokrajhar Assam, India. Journal of Environmental Research and Development , 7 (2A), 1100–1116.

Dimri, A. P., & Dash, S. K. (2012). Wintertime climatic trends in the western Himalayas. Climatic Change, 111 (3–4), 775–800.

Dobhal, D. P., Gergan, J. T., & Thayyen, R. J. (2008). Mass balance studies of the Dokriani Glacier from 1992 to 2000, Garhwal Himalaya, India. Bulletin of Glaciological Research, 25 , 9–17.

Dobhal, D. P., Gupta, A. K., Manish, M., & Khandelwal, D. D. (2013). Kedarnath disaster: Facts and plausible causes. Current Science , 105 (2), 171–174.

Dobhal, D. P., Mehta, M., & Srivastava, D. (2014). Influence of debris cover on terminus retreat and mass changes of Chorabari Glacier, Garhwal region, central Himalaya India. Journal of Glaciology, 59 (217), 961–971.

Dobhal, D. P., Gergan, J. T., & Thayyen, R. J. (2004). Recession and morphogeometrical changes of Dokriani glacier (1962–1995) Garhwal Himalaya, India. Current Science, 86 (5), 692–696.

Drenkhan, F., Huggel, C., Guardamino, L., & Haeberli, W. (2019). Managing risks and future options from new lakes in the deglaciating Andes of Peru: The example of the Vilcanota-Urubamba basin. Science of the Total Environment, 665 , 465–483.

Dubey, B., Yadav, R. R., Singh, J., & Chaturvedi, R. (2003). Upward shift of Himalayan pine in Western Himalaya, India. Current Science, 85 , 1135–1136.

Dyurgerov, M. B., & Meier, M. F. (2005). Glaciers and the changing Earth system: a 2004 snapshot . Institute of Arctic and Alpine Research , 58

Edwards, S. E., Lowe, C., Stanbrough, L., Walker, B., Kent, R., Oglesby, R., & Morton, K. (2010). The Waters of The Third Pole: Sources of Threat, Sources of Survival.

Eriksson, M., Xu, J., Shrestha, A. B., Vaidya, R. A., Santosh, N., & Sandström, K. (2009). The changing Himalayas: impact of climate change on water resources and livelihoods in the greater Himalayas. International centre for integrated mountain development (ICIMOD).

FAO. (2011). The state of the world’s land and water resources for Food and Agriculture Organization . Food and Agriculture Organization of the United Nations.

FAO. (2016). The state of the world’s land and water resources for Food and Agriculture Organization . Food and Agriculture Organization of the United Nations.

Farinotti, D., Huss, M., Fürst, J. J., Landmann, J., Machguth, H., Maussion, F., & Pandit, A. (2019). A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nature Geoscience, 12 (3), 168–173.

Ford, J. D., & Berrang-Ford, L. (2016). The 4Cs of adaptation tracking: Consistency, comparability, comprehensiveness, coherency. Mitigation and Adaptation Strategies for Global Change, 21 (6), 839–859.

Fu, Y. H., Gao, X. J., Zhu, Y. M., & Guo, D. (2021). Climate change projection over the Tibetan Plateau based on a set of RCM simulations. Advances in Climate Change Research .

Gaddam, V. K., Kulkarni, A. V., & Gupta, A. K. (2016). Estimation of glacial retreat and mass loss in Baspa basin. Western Himalaya. Spatial Information Research, 24 (3), 257–266.

Gaira, K. S., Dhar, U., & Belwal, O. K. (2011). Potential of herbarium records to sequence phenological pattern: A case study of Aconitum heterophyllum in the Himalaya. Biodiversity and Conservation, 20 (10), 2201.

Gaira, K. S., Rawal, R. S., Rawat, B., & Bhatt, I. D. (2014). Impact of climate change on the flowering of Rhododendron arboreum in central Himalaya, India. Current Science , 1735–1738.

Gaire, N. P., Koirala, M., Bhuju, D. R., & Carrer, M. (2017). Site-and species-specific treeline responses to climatic variability in eastern Nepal Himalaya. Dendrochronologia , 41 , 44–56.

Gairola, S., Shariff, N. M., Bhatt, A., & Kala, C. P. (2010). Influence of climate change on production of secondary chemicals in high altitude medicinal plants: Issues needs immediate attention. Journal of Medicinal Plants Research, 4 (18), 1825–1829.

Garg, P. K., Shukla, A., & Jasrotia, A. S. (2019). On the strongly imbalanced state of glaciers in the Sikkim, Eastern Himalaya, India. Science of the Total Environment, 691 , 16–35.

Gautam, M. R., Timilsina, G. R., & Acharya, K. (2013). Climate change in the Himalayas: current state of knowledge.

Gioli, G., Khan, T., Bisht, S., & Scheffran, J. (2014). Gender and environmentally-induced migration in Gilgit-Baltistan, Pakistan. Sustainable development in South Asia: shaping the future. Sustainable Development Policy Institute, Islamabad and Sange-Meel Publishers, Islamabad, 355–378.

Gopalakrishnan, R., Jayaraman, M., Bala, G., & Ravindranath, N. H. (2011). Climate change and Indian forests. Current Science , 348–355.

Gornall, J., Betts, R., Burke, E., Clark, R., Camp, J., Willett, K., & Wiltshire, A. (2010). Implications of climate change for agricultural productivity in the early twenty-first century. Philosophical Transactions of the Royal Society b: Biological Sciences, 365 (1554), 2973–2989.

Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M. S., & Xavier, P. K. (2006). Increasing trend of extreme rain events over India in a warming environment. Science, 314 (5804), 1442–1445.

Grabherr, G., Gottfried, M., & Pauli, H. (1994). Climate effects on mountain plants. Nature, 369 , 448. https://doi.org/10.1038/369448a0

Guhathakurta, P., & Rajeevan, M. (2008). Trends in the rainfall pattern over India. International Journal of Climatology: A Journal of the Royal Meteorological Society, 28 (11), 1453–1469.

Gurung, D. R., Kulkarni, A. V., Giriraj, A., Aung, K. S., Shrestha, B., & Srinivasan, J. (2011). Changes in seasonal snow cover in Hindu Kush-Himalayan region. The Cryosphere Discussions, 5 (2), 755–777.

H. Kamiabinia, F. Aslani. (2017). The Hamoun and Sistan Forgotten Ecosystems, 45 .

Hoegh-Guldberg, O., Jacob, D., Bindi, M., Brown, S., Camilloni, I., Diedhiou, A., et al. (2018). Impacts of 1.5 C global warming on natural and human systems. Global warming of 1.5 C. An IPCC Special Report .

Hussain, A., Qamar, F. M., Adhikari, L., Hunzai, A. I., & Bano, K. (2021). Climate change, mountain food systems, and emerging opportunities: A study from the Hindu Kush Karakoram Pamir Landscape, Pakistan. Sustainability, 13 (6), 3057.

ICIMOD. (2011). Climate change in the Hindu Kush-Himalayas: The state of current knowledge. Kathmandu, Nepal: International Centre for Integrated Mountain Development.

IMD. 2013. State level climate change in India. Editors- L.S. Rathore, S.D. Attri and A.K. Jaswal. Published by Indian Meteorological Department (IMD), Government of India

Immerzeel, W. W., Lutz, A. F., Andrade, M., et al. (2019). Importance and vulnerability of the world’s water towers. Nature, 577 , 364–369.

Immerzeel, W. W., Van Beek, L. P. H., Konz, M., Shrestha, A. B., & Bierkens, M. F. P. (2012). Hydrological response to climate change in a glacierized catchment in the Himalayas. Climatic Change, 110 (3–4), 721–736.

INCCA (2010). Climate change and India: a 4x4 assessment – a sectoral and regional analysis for 2030s. Indian Network for Climate Change Assessment, Ministry of Environment and Forests, Government of India, New Delhi.

IPCC (2007). Climate change 2007: Impact, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the IPCC. Cambridge: Cambridge University Press.

IPCC (2014). Climate change 2014: Impact, adaptation and vulnerability. Part B: Regional aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, USA: Cambridge University Press.

IPCC (2019). Climate change and land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems

Isaac, R. K., & Isaac, M. (2017). Vulnerability of Indian agriculture to climate change: A study of the Himalayan Region State. International Journal of Agricultural and Biosystems Engineering, 11 (3), 236–242.

Jain, S. K., Kumar, V., & Saharia, M. (2013). Analysis of rainfall and temperature trends in northeast India. International Journal of Climatology, 33 (4), 968–978.

Jhajharia, D., Pandey, P. K., Dabral, P. P., Kumar, R., & Choudhary, R. (2015). Variability in Temperature and Potential Evapotranspiration over West Siang in Arunachal Pradesh, India. Journal of Indian Geological Congress, 7 (2), 37–43.

Joshi, B. (2018). Recent trends of rural out-migration and its socio-economic and environmental impacts in Uttarakhand Himalaya. Journal of Urban and Regional Studies on Contemporary India, 4 (2), 1–14.

Joshi, R., & Kumar, K. (2014). Analysis of long term climate variability and changes in North-Western states of Indian Himalayan Region (IHR). Climate Change and Himalaya: Natural Hazards and Mountain Resources , 130.

Joshi, S., Kumar, K., Joshi, V., & Pande, B. (2014). Rainfall variability and indices of extreme rainfall-analysis and perception study for two stations over Central Himalaya India. Natural Hazards, 72 (2), 361–374.

Kala, C. P. (2009). Medicinal plants conservation and enterprise development. Medicinal Plants-International Journal of Phytomedicines and Related Industries, 1 (2), 79–95.

Kargel, J. S., Cogley, J. G., Leonard, G. J., Haritashya, U., & Byers, A. (2011). Himalayan glaciers: The big picture is a montage. Proceedings of the National Academy of Sciences , 108 (36), 14709–14710.

Kaushik, S., Dharpure, J. K., Joshi, P. K., Ramanathan, A. L., & Singh, T. (2019). Climate change drives glacier retreat in Bhaga basin located in Himachal Pradesh, India. Geocarto International , 1–20.

Khan, M. H. R., Rahman, A., Luo, C., Kumar, S., Islam, G. A., & Hossain, M. A. (2019). Detection of changes and trends in climatic variables in Bangladesh during 1988–2017. Heliyon, 5 (3), 01268.

Khan, N., Shahid, S., Ismail, T.b., Wang, X.-J. (2018) Spatial distribution of unidirectional trends in temperature and temperature extremes in Pakistan, Theoretical and Applied Climatology .

Khanal, U., Wilson, C., Lee, B. L., & Hoang, V. N. (2018). Climate change adaptation strategies and food productivity in Nepal: A counterfactual analysis. Climatic Change, 148 (4), 575–590.

Khuroo, A. A., Reshi, Z. A., Malik, A. H., Weber, E., Rashid, I., & Dar, G. H. (2012). Alien flora of India: Taxonomic composition, invasion status and biogeographic affiliations. Biological Invasions, 14 (1), 99–113.

Kilroy, G. (2015). A review of the biophysical impacts of climate change in three hotspot regions in Africa and Asia. Regional Environmental Change, 15 (5), 771–782.

Körner, C. (2004). Mountain biodiversity, its causes and function. AMBIO: A Journal of the Human Environment, 33 (13), 11–17.

Kothawale, D. R., & Rupa Kumar, K. (2005). On the recent changes in surface temperature trends over India. Geophysical Research Letters , 32 (18).

Koul, M. N., & Ganjoo, R. K. (2010). Impact of inter-and intra-annual variation in weather parameters on mass balance and equilibrium line altitude of Naradu Glacier (Himachal Pradesh), NW Himalaya, India. Climatic Change, 99 (1–2), 119–139.

Krishnan, R., Sabin, T. P., Madhura, R. K., Vellore, R. K., Mujumdar, M., Sanjay, J., Nayak, S. & Rajeevan, M., (2019). Non-monsoonal precipitation response over the Western Himalayas to climate change. Climate Dynamics, 52 (7), 4091–4109.

Krishnan, R., Gnanaseelan, C., Sanjay, J., Swapna, P., Dhara, C., Sabin, T. P., et al. (2020). Introduction to climate change over the Indian region. In Assessment of Climate Change over the Indian Region (pp. 1–20). Singapore: Springer.

Kulkarni, A. V., & Karyakarte, Y. (2014). Observed changes in Himalayan glaciers. Current Science , 237–244.

Kulkarni, A. V., & Pratibha, S. (2018). Assessment of glacier fluctuations in the Himalaya. In Science and Geopolitics of the White World , 183–195.

Kulkarni, A. V., Bahuguna, I. M., Rathore, B. P., Singh, S. K., Randhawa, S. S., Sood, R. K., & Dhar, S. (2007). Glacial retreat in Himalaya using Indian remote sensing satellite data. Current Science , 69–74.

Kulkarni, A. V., Rathore, B. P., Singh, S. K., & Bahuguna, I. M. (2011). Understanding changes in the Himalayan cryosphere using remote sensing techniques. International Journal of Remote Sensing, 32 (3), 601–615.

Kulkarni, A., Patwardhan, S., Kumar, K. K., Ashok, K., & Krishnan, R. (2013). Projected climate change in the Hindu Kush-Himalayan region by using the high-resolution regional climate model PRECIS. Mountain Research and Development, 33 (2), 142–151.

Kulkarni, A., Prasad, V., Shirsat, T., Chaturvedi, R. K., & Bahuguna, I. M. (2021). Impact of Climate Change on the Glaciers of Spiti River Basin, Himachal Pradesh, India. Journal of the Indian Society of Remote Sensing . https://doi.org/10.1007/s12524-021-01368-9 .

Kumar, K., Joshi, S., & Joshi, V. (2008a). Climate variability, vulnerability, and coping mechanism in Alaknanda catchment, central Himalaya, India. Ambio, 37 , 286–291.

Kumar, K., Dumka, R. K., Miral, M. S., Satyal, G. S., & Pant, M. (2008). Estimation of retreat rate of Gangotri glacier using rapid static and kinematic GPS survey. Current science, 258–262.

Kumar, V., Mehta, M., Mishra, A., & Trivedi, A. (2016). Temporal fluctuations and frontal area change of Bangni and Dunagiri glaciers from 1962 to 2013, Dhauliganga Basin, central Himalaya, India. Geomorphology, 284 , 88–98.

Kumar, V., Shukla, T., Mehta, M., Dobhal, D. P., Bisht, M. P. S., & Nautiyal, S. (2021). Glacier changes and associated climate drivers for the last three decades, Nanda Devi region, Central Himalaya, India. Quaternary International, 575 , 213–226.

Kumar, K. R., Sahai, A. K., Kumar, K. K., Patwardhan, S. K., Mishra, P. K., Revadekar, J. V., et al. (2006). High-resolution climate change scenarios for India for the 21st century. Current Science , 334–345.

Landauer, M., Juhola, S., & Söderholm, M. (2015). Inter-relationships between adaptation and mitigation: A systematic literature review. Climatic Change, 131 (4), 505–517.

Le Masson, V., & Nair, K. (2012). Does climate modeling help when studying adaptation to environmental changes? the case of Ladakh, India. In Climate change modeling for local adaptation in the Hindu Kush-Himalayan region. Emerald Group Publishing Limited.

Lenart, M., & Jones, C. (2014). Perceptions on climate change correlate with willingness to undertake some forestry adaptation and mitigation practices. Journal of Forestry, 112 (6), 553–563.

Liu, W., Zhang, Z. H. E., & Wan, S. (2009). Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Global Change Biology , 15 (1), 184–195.

Li, P., Zhu, W., Xie, Z., & Qiao, K. (2019). Integration of multiple climate models to predict range shifts and identify management priorities of the endangered Taxus wallichiana in the Himalaya–Hengduan Mountain region. Journal of Forestry Research , 1–18.

Liu, X., & Chen, B. (2000). Climatic warming in the Tibetan Plateau during recent decades. International Journal Climatology, 20 , 1729–1740.

Loria, N., & Bhardwaj, S. K. (2016). Farmers’ Response and Adaptation Strategies to Climate Change in Low-Hills of Himachal Pradesh in India. Nature Environment & Pollution Technology , 15 (3).

Maikhuri, R. K., Phondani, P. C., Dhyani, D., Rawat, L. S., Jha, N. K., & Kandari, L. S. (2018). Assessment of climate change impacts and its implications on medicinal plants-based traditional healthcare system in Central Himalaya, India. Iranian Journal of Science and Technology, Transactions a: Science, 42 (4), 1827–1835.

Maikhuri, R. K., Rawat, L. S., Phondani, P., & Farooquee, N. (2009). Impact of climate change and coping strategies in Nanda Devi Biosphere Reserve (NDBR), Central Himalaya, India. Proceeding of Global Mountain Biodiversity and Climate Change, ICIMOD, Kathmandu , 138–148.

Mamgain, A., Bhandari, P. K., Semwal, D. P., & Uniyal, P. L. (2017). Population assessment, mapping and flowering response of Rhododendron arboreum Sm.-A keystone species in central Himalayan region of Uttarakhand, India. International Journal of Ecology and Environmental Sciences, 43 (3), 205–220.

Mar, S., Nomura, H., Takahashi, Y., Ogata, K., & Yabe, M. (2018). Impact of erratic rainfall from climate change on pulse production efficiency in lower Myanmar. Sustainability, 10 (2), 402.

Maurer, J. M., Schaefer, J. M., Rupper, S., & Corley, A. (2019). Acceleration of ice loss across the Himalayas over the past 40 years. Science Advances, 5 (6), 7266.

Mayewski, P. A., Perry, L. B., Matthews, T., & Birkel, S. D. (2020). Climate change in the Hindu Kush Himalayas: Basis and gaps. One Earth, 3 (5), 551–555.

McDougall, K. L., Alexander, J. M., Haider, S., Pauchard, A., Walsh, N. G., & Kueffer, C. (2011). Alien flora of mountains: Global comparisons for the development of local preventive measures against plant invasions. Diversity and Distributions, 17 (1), 103–111.

Meena, R. K., Vikas, V., & T.P., Yadav, R.P., Mahapatra, S.K., Surya, J.N., Singh, D., Singh, S.K. (2019). Local perceptions and adaptation of indigenous communities to climate change: Evidences from high mountain pangi valley of Indian Himalayas. Indian Journal of Traditional Knowledge, 18 (1), 58–67.

Mehta, M., Dobhal, D. P., & Bisht, M. P. S. (2011). Change of Tipra glacier in the Garhwal Himalaya, India, between 1962 and 2008. Progress in Physical Geography, 35 (6), 721–738.

Menon, S., Koch, D., Beig, G., Sahu, S., Fasullo, J., & Orlikowski, D. (2010). Black carbon aerosols and the third polar ice cap. Atmospheric Chemistry and Physics, 10 (10), 4559–4571.

Menzel, A., Sparks, T. H., Estrella, N., & Roy, D. B. (2006). Altered geographic and temporal variability in phenology in response to climate change. Global Ecology and Biogeography, 15 (5), 498–504.

Mir, R. A., & Majeed, Z. (2018). Frontal recession of Parkachik Glacier between 1971–2015, Zanskar Himalaya using remote sensing and field data. Geocarto International, 33 (2), 163–177.

Mir, R. A., Jain, S. K., Saraf, A. K., & Goswami, A. (2014). Glacier changes using satellite data and effect of climate in Tirungkhad basin located in western Himalaya. Geocarto International, 29 (3), 293–313.

Mishra, A. (2014). Changing climate of Uttarakhand, India. Journal of Geological Geoscience, 3 (163), 2.

Mishra, A. K., & Rafiq, M. (2017). Analyzing snowfall variability over two locations in Kashmir, India in the context of warming climate. Dynamics of Atmospheres and Oceans, 79 , 1–9.

Mittal, S., & Sethi, D. (2009). Food security in South Asia: Issues and opportunities (No. 240) . working paper.

Moller, H., Berkes, F., Lyver, P. O., & Kislalioglu, M. (2004). Combining science and traditional ecological knowledge: monitoring populations for co-management. Ecology and Society , 9 (3).

Moors, E. J., & Stoffel, M. (2013). Changing monsoon patterns, snow and glacial melt, its impacts and adaptation options in northern India: Synthesis . Elsevier.

Mudgal, V. (1997). Floristic diversity and conservation strategies in India. P. K. Hajra Botanical Survey of India, Ministry of Environment and Forests.

Mukherjee, A., & Banerjee, S. (2009). Rainfall and temperature trend analysis in the red and lateritic zone of West Bengal. Journal of Agrometeorology, 11 (2), 196–200.

Nautiyal, B. P., Nautiyal, M. C., Khanduri, V. P., & Rawat, N. (2009). Floral biology of Aconitum heterophyllum Wall: A critically endangered alpine medicinal plant of Himalaya, India. Turkish Journal of Botany, 33 (1), 13–20.

Nayava, JL and Gurung DB (2010) Impact of climate change on product and productivity:a case study of maize research and development in Nepal. The Journal of Agriculture and Environment

NCVST (2009). Vulnerability through the eyes of vulnerable: Climate change induced uncertainties and Nepal's development predicaments. Kathmandu: Institute for Social and Environmental Transition-Nepal (ISET-N, Kathmandu) and Institute for Social and Environmental Transition (ISET, Boulder, Colorado) for Nepal Climate Vulnerability Study Team (NCVST).

Negi, G. C. S., Samal, P. K., Kuniyal, J. C., Kothyari, B. P., Sharma, R. K., & Dhyani, P. P. (2012a). Impact of climate change on the western Himalayan mountain ecosystems: An overview. Tropical Ecology, 53 (3), 345–356.

Negi, H.S., Shekhar, M.S., Gusain, H.S., Ganju, A. (2018). Winter climate and snow cover variability over north-west Himalaya. Science and Geopolitics of the White World . Springer, 127–142.

Negi, V. S., Maikhuri, R. K., Maletha, A., & Phondani, P. C. (2019a). Ethnobotanical knowledge and population density of threatened medicinal plants of Nanda Devi Biosphere Reserve, Western Himalaya, India. Iranian Journal of Science and Technology, Transactions a: Science, 43 (1), 63–73.

Negi, V. S., & Maikhuri, R. K. (2013). Socio-ecological and religious perspective of agrobiodiversity conservation: Issues, concern and priority for sustainable agriculture, Central Himalaya. Journal of Agricultural and Environmental Ethics, 26 (2), 491–512.

Negi, V. S., Giri, L., & Sekar, K. C. (2018b). Floristic diversity, community composition and structure in Nanda Devi National Park after prohibition of human activities, Western Himalaya, India. Current Science, 115 (6), 1056.

Negi, V. S., Kewlani, P., Pathak, R., Bhatt, D., Bhatt, I. D., Rawal, R. S., Sundriyal, R. C., & Nandi, S. K. (2018c). Criteria and indicators for promoting cultivation and conservation of Medicinal and Aromatic Plants in Western Himalaya, India. Ecological Indicators, 93 , 434–446.

Negi, V. S., Maikhuri, R. K., & Rawat, L. S. (2012b). Paradigm and ecological implication of changing agricultural land-use: A case study from Govind Wildlife Sanctuary, Central Himalaya. India. Journal of Mountain Science, 9 (4), 547–557.

Negi, V. S., Maikhuri, R. K., Pharswan, D., Thakur, S., & Dhyani, P. P. (2016). Climate change impact in the Western Himalaya: People’s perception and adaptive strategies. Journal of Mountain Science, 14 (2), 403–416.

Negi, V. S., Maletha, A., Pathak, R., & Maikhuri, R. K. (2021a). Expansion of a native species and its impacts on alpine ecosystems, Indian Himalaya. Biologia, 76 (3), 889–899.

Negi, V. S., Pathak, R., Rawal, R. S., Bhatt, I. D., & Sharma, S. (2019b). Long-term ecological monitoring on forest ecosystems in Indian Himalayan Region: Criteria and indicator approach. Ecological Indicators, 102 , 374–381.

Negi, V. S., Thakur, S., Dhyani, R., Bhatt, I. D., & Rawal, R. S. (2021b). Climate change observations of indigenous communities in the Indian Himalaya. Weather, Climate, and Society, 13 (2), 245–257.

Nogués-Bravo, D., Araújo, M. B., Errea, M. P., & Martinez-Rica, J. P. (2007). Exposure of global mountain systems to climate warming during the 21st Century. Global Environmental Change , 17 (3–4), 420–428.

Nul Haq, N., Rahman, F., & Tabassum, I. (2021). Forest cover dynamics in Palas Valley Kohistan, Hindu Kush-Himalayan Mountains, Pakistan. Journal of Mountain Science, 18 (2), 416–426.

Nwe, T., Zomer, R. J., & Corlett, R. T. (2020). Projected impacts of climate change on the protected areas of Myanmar. Climate, 8 (9), 99.

Pandey, R., Kumar, P., Archie, K. M., Gupta, A. K., Joshi, P. K., Valente, D., & Petrosillo, I. (2018). Climate change adaptation in the western-Himalayas: Household level perspectives on impacts and barriers. Ecological Indicators, 84 , 27–37.

Pandey, R., Maithani, N., Aretano, R., Zurlini, G., Archie, K. M., Gupta, A. K., & Pandey, V. P. (2016). Empirical assessment of adaptation to climate change impacts of mountain households: Development and application of an Adaptation Capability Index. Journal of Mountain Science, 13 (8), 1503–1514.

Panigrahy, S., Anitha, D., Kimothi, M. M., & Singh, S. P. (2010). Timberline change detection using topographic map and satellite imagery. Tropical Ecology, 51 (1), 87–91.

Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421 (6918), 37–42.

Pathak, R., Negi, V. S., Rawal, R. S., & Bhatt, I. D. (2019). Alien plant invasion in the Indian Himalayan Region: state of knowledge and research priorities. Biodiversity and Conservation , 1–30.

Phondani, P. C., Maikhuri, R. K., & Saxena, K. G. (2014). The efficacy of herbal system of medicine in the context of allopathic system in Indian Central Himalaya. Journal of Herbal Medicine, 4 (3), 147–158.

Poddar, J., & Pandey, A. C. (2014). Estimating the impact of changes in mass balance on variations in glacier area and snout fluctuations in Western Himalayas, J&K, India. Geoscience and Remote Sensing Symposium , 4034–4037.

Poudel, D. D., & Duex, T. W. (2017). Vanishing springs in Nepalese mountains: Assessment of water sources, farmers’ perceptions, and climate change adaptation. Mountain Research and Development, 37 (1), 35–46.

Pramanik, P., & Bhaduri, D. (2016). Impact of Climate Change on Water Resources in Indian Himalaya. In Conservation Agriculture (487–507). Springer.

Pratap, D. (2012). Impacts of climate change and coping strategies by mountain communities of Uttarakhand Himalaya (p. 49). Climate Change & Himalayan Informatics.

Raina, V. K. (2009). Himalayan glaciers: a state-of-art review of glacial studies, glacial retreat and climate change. Himalayan Glaciers: A State-of-Art Review of Glacial Studies, Glacial Retreat and Climate Change. Discussion Paper 60 pp

Rajbhandari, R., Shrestha, A. B., Nepal, S., Wahid, S., & Ren, G. Y. (2017). Extreme climate projections over the transboundary Koshi River Basin using a high resolution regional climate model. Advances in Climate Change Research, 8 (3), 199–211.

Ramakrishna, R. N., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C., Tukder, C. J., & Myneni & RB, Running SW,. (2003). Climate-driven increases in global terrestrial net primary production form 1982 to 1999. Science, 300 , 1560–1563.

Ramos-Castillo, A., Castellanos, E. J., & McLean, K. G. (2017). Indigenous peoples, local communities and climate change mitigation. Climatic Change, 140 (1), 1–4.

Rana, J. C., & Sharma, S. K. (2009). Plant genetic resources management under emerging climate change. Indian Journal of Genetics , 69 , 267–283.

Rana, S., & Gupta, V. (2009). Watershed management in the Indian Himalayan region: Issues and challenges. In World Environmental and Water Resources Congress 2009: Great Rivers (pp. 1–12).

Rashid, I., Romshoo, S. A., & Abdullah, T. (2017). The recent deglaciation of Kolahoi valley in Kashmir Himalaya, India in response to the changing climate. Journal of Asian Earth Sciences, 138 , 38–50.

Rautela, P., & Karki, B. (2015). Impact of climate change on life and livelihood of indigenous people of higher Himalaya in Uttarakhand, India. American Journal of Environmental Protection, 3 (4), 112–124.

Rawal, R.S. Bhatt, I.D., Chandra Sekar, K., and Nandi, S.K., eds., 2013. The Himalayan Biodiversity: Richness, Representativeness, Uniqueness and Life –support Values. G.B. Pant Institute of Himalayan Environment and Development (GBPIHED), Kosi-Katarmal, Almora, Uttarakhand, India, 84pp.

Rawal, R. S., Negi, V. S., & Bhatt, I. D. (2021). Changing outlook on harnessing biodiversity values–A special focus on Indian Himalaya. Journal of Graphic Era University . https://doi.org/10.13052/jgeu0975-1416.914 .

Ren, L., Duan, K., & Xin, R. (2020). Impact of future loss of glaciers on precipitation pattern: A case study from south-eastern Tibetan Plateau. Atmospheric Research , 242 , 104984.

Ren, Y. Y., Ren, G. Y., Sun, X. B., Shrestha, A. B., You, Q. L., Zhan, Y. J., & Wen, K. M. (2017). Observed changes in surface air temperature and precipitation in the Hindu Kush Himalayan region over the last 100-plus years. Advances in Climate Change Research, 8 (3), 148–156.

Reyes-García, V., García-del-Amo, D., Benyei, P., Fernández-Llamazares, Á., Gravani, K., Junqueira, A. B., & Soleymani-Fard, R. (2019). A collaborative approach to bring insights from local observations of climate change impacts into global climate change research. Current Opinion in Environmental Sustainability, 39 , 1–8.

Rohrer, M., Salzmann, N., Stoffel, M., & Kulkarni, A. V. (2013). Missing (in-situ) snow cover data hampers climate change and runoff studies in the Greater Himalayas. Science of the Total Environment, 468 , S60–S70.

Romeo, R., Grita, F., Parisi, F., & Russo, L. (2020). Vulnerability of mountain peoples to food insecurity: updated data and analysis of drivers. Food & Agriculture Organistaion

Root, T. L., Price, J. T., Hall, K. R., Schneider, S. H., Rosenzweig, C., & Pounds, J. A. (2003). Fingerprints of global warming on wild animals and plants. Nature, 421 (6918), 57–60.

Roy, A., & Rathore, P. (2019). Western Himalayan Forests in Climate Change Scenario. In Remote Sensing of Northwest Himalayan Ecosystems (265–283). Springer.

Rymbai, D., & Sheikh, F. M. (2018). The insight of agricultural adaptation to climate change: A case of rice growers in Eastern Himalaya, India. International Journal of Biometeorology, 62 (10), 1833–1845.

Saikia, U. S., Goswami, B., Rajkhowa, D. J., Venkatesh, A., Ramachandran, K., Rao, V. U. M., Venkateswarlu, B., & Ngachan, S. V. (2013). Shift in monsoon rainfall pattern in the North Eastern region of India post 1991. Journal of Agrometeorology, 15 (2), 162–164.

Sati, V. P. (2015). Climate change and socio-ecological transformation in high mountains: an empirical study of Garhwal Himalaya. Change and Adaptation in Socio-Ecological Systems , 2 (1).

Sati, V. P., & Wei, D. (2018). Crop productivity and suitability analysis for land-use planning in Himalayan ecosystem of Uttarakhand, India. Current Science, 115 (4), 767.

Savo, V., Lepofsky, D., Benner, J. P., Kohfeld, K. E., Bailey, J., & Lertzman, K. (2016). Observations of climate change among subsistence-oriented communities around the world. Nature Climate Change, 6 (5), 462.

Saxena, K. G., Maikhuri, R. K., & Rao, K. S. (2005). Changes in agricultural biodiversity: Implications for sustainable livelihood in the Himalaya. Journal of Mountain Science, 2 (1), 23.

Scherler, D., Bookhagen, B., & Strecker, M. R. (2011). Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nature Geoscience, 4 (3), 156–159.

Schickhoff, U., Bobrowski, M., Böhner, J., Bürzle, B., Chaudhary, R. P., Gerlitz, L., & Wedegärtner, R. (2015). Do Himalayan treelines respond to recent climate change? An evaluation of sensitivity indicators. Earth System Dynamics, 6 (1), 245–265.

Sein, K. K., Chidthaisong, A., & Oo, K. L. (2018). Observed trends and changes in temperature and precipitation extreme indices over Myanmar. Atmosphere, 9 (12), 477.

Sharma, E. (2017). China-India collaborative opportunities on science and technology for sustainable development of the Hindu Kush Himalaya. Science Bulletin, 62 (10), 673–674.

Sharma, G., & Rai, L. K. (2012). Climate change and sustainability of agrodiversity in traditional farming of the Sikkim Himalaya. Climate Change in Sikkim: Patterns, Impacts, Initiatives , 193–218.

Sharma, P., Randhawa, S. S., Rana, R. S., & Bharti, H. (2020). Impact assessment of climate change on agriculture sector in Himachal Pradesh case study: District Mandi.

Sharma, R. K., & Shrestha, D. G. (2016). Climate perceptions of local communities validated through scientific signals in Sikkim Himalaya, India. Environmental Monitoring and Assessment, 188 (10), 578.

Sharma, S. (1999). Mass balance studies of Changme Khangpu glacier, Mangan District, Sikkim. Symposium on Snow, Ice and Glaciers, New Delhi, India , 10–11.

Shekhar, M. S., Chand, H., Kumar, S., Srinivasan, K., & Ganju, A. (2010). Climate-change studies in the Western Himalaya. Annals of Glaciology, 51 (54), 105–112.

Shrestha, AB; Devkota, LP (2010) Climate change in the eastern Himalayas: Observed trends and model projections. Kathmandu, Nepal: ICIMOD.

Shrestha, A. B., Wake, C. P., Mayewski, P. A., & Dibb, J. E. (1999). Maximum temperature trends in the Himalaya and its vicinity: Analysis based on temperature records from Nepal for the period 1971–94. Journal of Climate, 12 , 2775–2787.

Shrestha, S., Neupane, S., Mohanasundaram, S., & Pandey, V. P. (2020). Mapping groundwater resiliency under climate change scenarios: A case study of Kathmandu Valley, Nepal. Environmental Research, 183 , 109149.

Shrestha, S., Yao, T., Kattel, D. B., & Devkota, L. P. (2019). Precipitation characteristics of two complex mountain river basins on the southern slopes of the central Himalayas. Theoretical and Applied Climatology, 138 (1–2), 1159–1178.

Shrestha, U. B., Gautam, S., & Bawa, K. S. (2012). Widespread climate change in the Himalayas and associated changes in local ecosystems. PloS One , 7 (5).

Shukla, R., Chakraborty, A., Sachdeva, K., & Joshi, P. K. (2018). Agriculture in the western Himalayas–an asset turning into a liability. Development in Practice, 28 (2), 318–324.

Simberloff, D. (2001). Biological invasions—how are they affecting us, and what can we do about them? Western North American Naturalist , 308–315.

Singh, R. B., & Mal, S. (2014). Trends and variability of monsoon and other rainfall seasons in Western Himalaya, India. Atmospheric Science Letters , 15 (3), 218–226.

Singh, C. P., Panigrahy, S., Thapliyal, A., Kimothi, M. M., Soni, P., & Parihar, J. S. (2012). Monitoring the alpine treeline shift in parts of the Indian Himalayas using remote sensing. Current Science, 102 (4), 559–562.

Singh, P., Arya, V., Negi, G. C. S., & Singh, S. P. (2018a). Expansion of Rhododendron campanulatum krummholz in the treeline ecotone in Tungnath Garhwal Himalaya. Tropical Ecology, 59 (2), 287–295.

Singh, R., & Singh, G. S. (2017). Traditional agriculture: A climate-smart approach for sustainable food production. Energy, Ecology and Environment, 2 (5), 296–316.

Singh, R. K., Hussain, S. M., Riba, T., Singh, A., Padung, E., Rallen, O., Lego, Y. J., & Bhardwaj, A. K. (2018b). Classification and management of community forests in Indian Eastern Himalayas: Implications on ecosystem services, conservation and livelihoods. Ecological Processes, 7 (1), 27.

Singh, R. K., Singh, A., Kumar, S., Sheoran, P., Sharma, D. K., Stringer, L. C., & Singh, D. (2020). Perceived climate variability and compounding stressors: Implications for risks to livelihoods of smallholder Indian farmers. Environmental Management, 66 (5), 826–844.

Singh, S. L., & Sahoo, U. K. (2019). Shift in phenology of some dominant tree species due to climate change in Mizoram, North-East India. Indian Journal of Ecology, 46 (1), 132–136.

Singh, S. P., Bassignana-Khadka, I., Singh Karky, B., & Sharma, E. (2011). Climate change in the Hindu Kush-Himalayas: the state of current knowledge. International Centre for Integrated Mountain Development (ICIMOD).

Singh, S. P., Singh, V., & Skutsch, M. (2010). Rapid warming in the Himalayas: Ecosystem responses and development options. Climate and Development, 2 (3), 221–232.

Singh, V., & Goyal, M. K. (2016). Changes in climate extremes by the use of CMIP5 coupled climate models over eastern Himalayas. Environmental Earth Sciences, 75 (9), 839.

Smadja, J., Aubriot, O., Puschiasis, O., Duplan, T., Grimaldi, J., Hugonnet, M., & Buchheit, P. (2015). Climate change and water resources in the Himalayas. Field study in four geographic units of the Koshi basin, Nepal. Journal of Alpine Research , 103–2.

Song, M., Zhou, C., & Ouyang, H. (2004). Distributions of dominant tree species on the Tibetan Plateau under current and future climate scenarios. Mountain Research and Development, 24 , 166–173.

Srivastava, P., & Misra, D. K. (2012). Optically stimulated luminescence chronology of terrace sediments of Siang River, Higher NE Himalaya: Comparison of Quartz and Feldspar chronometers. Journal of the Geological Society of India, 79 (3), 252–258.

Srivastava, R. K., Talla, A., Swain, D. K., & Panda, R. K. (2019). Quantitative approaches in adaptation strategies to cope with increased temperatures following climate change in potato crop. Potato Research , 62 (2), 175–191.

Sun, X. B., Ren, G. Y., Shrestha, A. B., Ren, Y. Y., You, Q. L., Zhan, Y. J., & Rajbhandari, R. (2017). Changes in extreme temperature events over the Hindu Kush Himalaya during 1961–2015. Advances in Climate Change Research, 8 (3), 157–165.

Tambe, S., Arrawatia, M. L., Bhutia, N. T., & Swaroop, B. (2011). Rapid, cost-effective and high resolution assessment of climate-related vulnerability of rural communities of Sikkim Himalaya, India. Current Science , 165–173.

Tambe, S., Kharel, G., Arrawatia, M. L., Kulkarni, H., Mahamuni, K., & Ganeriwala, A. K. (2012). Reviving dying springs: Climate change adaptation experiments from the Sikkim Himalaya. Mountain Research and Development, 32 (1), 62–72.

Telwala, Y., Brook, B. W., Manish, K., & Pandit, M. K. (2013). Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicentre. PloS One , 8 (2).

Tesfahunegn, G. B., Mekonen, K., & Tekle, A. (2016). Farmers’ perception on causes, indicators and determinants of climate change in northern Ethiopia: Implication for developing adaptation strategies. Applied Geography, 73 , 1–12.

Tewari, A., Bhatt, J., & Mittal, A. (2016). Influence of tree water potential in inducing flowering in Rhododendron arboreum in the central Himalayan region. Iforest-Biogeosciences and Forestry, 9 (5), 842.

Tewari, A., Mittal, A., & Singh, N. (2017). Seed maturation timing in Quercus leucotrichophora A. camus along an altitudinal gradient in Uttarakhand Himalaya. Environment Conservation Journal, 18 (3), 53–59.

Thakur, S., Negi, V. S., Pathak, R., Dhyani, R., Durgapal, K., & Rawal, R. S. (2020). Indicator based integrated vulnerability assessment of community forests in Indian west Himalaya. Forest Ecology and Management, 457 , 117674.

Thapa, B., & Scott, C. A. (2019). Institutional strategies for adaptation to water stress in farmer-managed irrigation systems of Nepal. International Journal of the Commons , 13 (2).

Thapa, S., Chitale, V., Rijal, S. J., Bisht, N., & Shrestha, B. B. (2018). Understanding the dynamics in distribution of invasive alien plant species under predicted climate change in Western Himalaya. PloS One , 13 (4).

Thapa, S., Li, B., Fu, D., Shi, X., Tang, B., Qi, H., & Wang, K. (2020). Trend analysis of climatic variables and their relation to snow cover and water availability in the Central Himalayas: A case study of Langtang Basin, Nepal. Theoretical and Applied Climatology , 1–13.

Tiwari, A., Fan, Z. X., Jump, A. S., Li, S. F., & Zhou, Z. K. (2017). Gradual expansion of moisture sensitive Abies spectabilis forest in the Trans-Himalayan zone of central Nepal associated with climate change. Dendrochronologia, 41 , 34–43.

Tomar, C. S., Saha, D., Das, S., Shaw, S., Bist, S., & Gupta, M. K. (2017). Analysis of temperature variability and trends over Tripura. Mausam, 68 (1), 149–160.

Tripathi, A., & Singh, G. S. (2013). Perception, anticipation and responses of people to changing climate in the Gangetic Plain of India. Current Science , 1673–1684.

Tripathi, P., Behera, M. D., & Roy, P. S. (2019). Plant invasion correlation with climate anomaly: An Indian retrospect. Biodiversity and Conservation, 28 (8–9), 2049–2062.

Tse-ring, K., Sharma, E., Chettri, N., & Shrestha, A. B. (2010). Climate change vulnerability of mountain ecosystems in the Eastern Himalayas. International centre for integrated mountain development (ICIMOD).

Uddin, K., Chaudhary, S., Chettri, N., Kotru, R., Murthy, M., Chaudhary, R. P., Ning, W., Shrestha, S. M., & Gautam, S. K. (2015). The changing land cover and fragmenting forest on the roof of the world: A case study in Nepal’s Kailash sacred landscape. Landscape Urban Plan, 141 , 1–10.

Uprety, Y., Shrestha, U. B., Rokaya, M. B., Shrestha, S., Chaudhary, R. P., Thakali, A., & Asselin, H. (2017). Perceptions of climate change by highland communities in the Nepal Himalaya. Climate and Development, 9 (7), 649–661.

Van Gevelt, T., Abok, H., Bennett, M. M., Fam, S. D., George, F., Kulathuramaiyer, N., & Zaman, T. (2019). Indigenous perceptions of climate anomalies in Malaysian Borneo. Global Environmental Change, 58 , 101974.

Vashistha, R. K., Rawat, N., Chaturvedi, A. K., Nautiyal, B. P., Prasad, P., & Nautiyal, M. C. (2009). An exploration on the phenology of different growth forms of an alpine expanse of North-West Himalaya, India. New York Science Journal , 2 (6), 29–41.

Vedwan, N., & Rhoades, R. E. (2001). Climate change in the Western Himalayas of India: A study of local perception and response. Climate Research , 19 (2), 109–117.

Viviroli, D., Kummu, M., Meybeck, M., Kallio, M., & Wada, Y. (2020). Increasing dependence of lowland populations on mountain water resources. Nature Sustainability, 3 (11), 917–928.

Wang, B., Bao, Q., Hoskins, B., Wu, G., & Liu, Y. (2008). Tibetan Plateau warming and precipitation changes in East Asia. Geophysical Research Letters . https://doi.org/10.1029/2008GL034330 .

Wester, P., Mishra, A., Mukherji, A., & Shrestha, A. B. (2019). The Hindu Kush Himalaya assessment: Mountains, climate change, sustainability and people (627). Springer Nature.

Xie, H., Zhu, X., & Yuan, D.-Y. (2015). Pan evaporation modelling and changing attribution analysis on the Tibetan Plateau (1970–2012). Hydrological Process, 29 (9), 2164–2177.

Xu, J., Grumbine, R. E., Shrestha, A., Eriksson, M., Yang, X., Wang, Y. U. N., & Wilkes, A. (2009). The melting Himalayas: Cascading effects of climate change on water, biodiversity, and livelihoods. Conservation Biology, 23 (3), 520–530.

Yan, L. B., Liu Has, X. D. (2014). Climatic warming over the Tibetan Plateau paused or continued in recent years. Journal of Earth Ocean Atmospheric Science , 1 , 13–28.

Yaqoob, A., Yunus, M., Bhat, G. A., & Singh, D. P. (2015). Phytodiversity and Seasonal Variations in the Soil Characteristics of Shrublands of Dachigam National Park, Jammu and Kashmir, India. Climate Change and Environmental Sustainability, 3 (2), 137–143.

Yasunari, T. J., Bonasoni, P., Laj, P., Fujita, K., Vuillermoz, E., Marinoni, A., Cristofanelli, P., Duchi, R., Tartari, G., & Lau, K.-M. (2010). Estimated impact of black carbon deposition during pre-monsoon season from Nepal Climate Observatory-Pyramid data and snow albedo changes over Himalayan glaciers. Atmospheric Chemistry and Physics, 10 (14), 6603–6615.

You, Q. L., Ren, G. Y., Zhang, Y. Q., Ren, Y. Y., Sun, X. B., Zhan, Y. J., et al. (2017). An overview of studies of observed climate change in the Hindu Kush Himalayan (HKH) region. Advances in Climate Change Research , 8 (3), 141–147.

Zaz, S. N., Romshoo, S. A., Krishnamoorthy, R. T., & Viswanadhapalli, Y. (2019). Analyses of temperature and precipitation in the Indian Jammu and Kashmir region for the 1980–2016 period: Implications for remote influence and extreme events. Atmospheric Chemistry and Physics, 19 (1), 15–37.

Zemp, M., Frey, H., Gärtner-Roer, I., Nussbaumer, S. U., et al. (2015). Historically unprecedented global glacier decline in the early 21st century. Journal of Glaciology, 61 , 745–762.

Zemp, M., Huss, M., Thibert, E., Eckert, N., McNabb, R., Huber, J., et al. (2019). Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature , 568 (7752), 382–386.

Download references

Acknowledgements

The authors are thankful to Director GBP-NIHE, Kosi-Katarmal, Almora, Uttarakhand, for facilities and encouragement. Partial funding from the Department of Science and Technology (DST), Govt. of India, under NMSHE—Task Force 3 (Forest Resources and Plant Biodiversity), and ICIMOD, Kathmandu, under KSLCDI-II is gratefully acknowledged.

Author information

Authors and affiliations.

Center for Biodiversity Conservation and Management, G.B. Pant National Institute of Himalayan Environment (NIHE), Kosi-Katarmal, Almora, 263643, Uttarakhand, India

Vikram S. Negi, Deep C. Tiwari, Laxman Singh, Shinny Thakur & Indra D. Bhatt

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Vikram S. Negi .

Ethics declarations

Conflict of interest.

The authors do not have any conflicts of interest for this study and manuscript.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 103 kb)

Rights and permissions.

Reprints and permissions

About this article

Negi, V.S., Tiwari, D.C., Singh, L. et al. Review and synthesis of climate change studies in the Himalayan region. Environ Dev Sustain 24 , 10471–10502 (2022). https://doi.org/10.1007/s10668-021-01880-5

Download citation

Received : 19 May 2020

Accepted : 30 September 2021

Published : 11 November 2021

Issue Date : September 2022

DOI : https://doi.org/10.1007/s10668-021-01880-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Temperature
  • Climate change impacts
  • Glacier retreat
  • Drought incidents
  • Climate change adaptation
  • Find a journal
  • Publish with us
  • Track your research

National Academies Press: OpenBook

Climate Change: Evidence and Causes: Update 2020 (2020)

Chapter: conclusion, c onclusion.

This document explains that there are well-understood physical mechanisms by which changes in the amounts of greenhouse gases cause climate changes. It discusses the evidence that the concentrations of these gases in the atmosphere have increased and are still increasing rapidly, that climate change is occurring, and that most of the recent change is almost certainly due to emissions of greenhouse gases caused by human activities. Further climate change is inevitable; if emissions of greenhouse gases continue unabated, future changes will substantially exceed those that have occurred so far. There remains a range of estimates of the magnitude and regional expression of future change, but increases in the extremes of climate that can adversely affect natural ecosystems and human activities and infrastructure are expected.

Citizens and governments can choose among several options (or a mixture of those options) in response to this information: they can change their pattern of energy production and usage in order to limit emissions of greenhouse gases and hence the magnitude of climate changes; they can wait for changes to occur and accept the losses, damage, and suffering that arise; they can adapt to actual and expected changes as much as possible; or they can seek as yet unproven “geoengineering” solutions to counteract some of the climate changes that would otherwise occur. Each of these options has risks, attractions and costs, and what is actually done may be a mixture of these different options. Different nations and communities will vary in their vulnerability and their capacity to adapt. There is an important debate to be had about choices among these options, to decide what is best for each group or nation, and most importantly for the global population as a whole. The options have to be discussed at a global scale because in many cases those communities that are most vulnerable control few of the emissions, either past or future. Our description of the science of climate change, with both its facts and its uncertainties, is offered as a basis to inform that policy debate.

A CKNOWLEDGEMENTS

The following individuals served as the primary writing team for the 2014 and 2020 editions of this document:

  • Eric Wolff FRS, (UK lead), University of Cambridge
  • Inez Fung (NAS, US lead), University of California, Berkeley
  • Brian Hoskins FRS, Grantham Institute for Climate Change
  • John F.B. Mitchell FRS, UK Met Office
  • Tim Palmer FRS, University of Oxford
  • Benjamin Santer (NAS), Lawrence Livermore National Laboratory
  • John Shepherd FRS, University of Southampton
  • Keith Shine FRS, University of Reading.
  • Susan Solomon (NAS), Massachusetts Institute of Technology
  • Kevin Trenberth, National Center for Atmospheric Research
  • John Walsh, University of Alaska, Fairbanks
  • Don Wuebbles, University of Illinois

Staff support for the 2020 revision was provided by Richard Walker, Amanda Purcell, Nancy Huddleston, and Michael Hudson. We offer special thanks to Rebecca Lindsey and NOAA Climate.gov for providing data and figure updates.

The following individuals served as reviewers of the 2014 document in accordance with procedures approved by the Royal Society and the National Academy of Sciences:

  • Richard Alley (NAS), Department of Geosciences, Pennsylvania State University
  • Alec Broers FRS, Former President of the Royal Academy of Engineering
  • Harry Elderfield FRS, Department of Earth Sciences, University of Cambridge
  • Joanna Haigh FRS, Professor of Atmospheric Physics, Imperial College London
  • Isaac Held (NAS), NOAA Geophysical Fluid Dynamics Laboratory
  • John Kutzbach (NAS), Center for Climatic Research, University of Wisconsin
  • Jerry Meehl, Senior Scientist, National Center for Atmospheric Research
  • John Pendry FRS, Imperial College London
  • John Pyle FRS, Department of Chemistry, University of Cambridge
  • Gavin Schmidt, NASA Goddard Space Flight Center
  • Emily Shuckburgh, British Antarctic Survey
  • Gabrielle Walker, Journalist
  • Andrew Watson FRS, University of East Anglia

The Support for the 2014 Edition was provided by NAS Endowment Funds. We offer sincere thanks to the Ralph J. and Carol M. Cicerone Endowment for NAS Missions for supporting the production of this 2020 Edition.

F OR FURTHER READING

For more detailed discussion of the topics addressed in this document (including references to the underlying original research), see:

  • Intergovernmental Panel on Climate Change (IPCC), 2019: Special Report on the Ocean and Cryosphere in a Changing Climate [ https://www.ipcc.ch/srocc ]
  • National Academies of Sciences, Engineering, and Medicine (NASEM), 2019: Negative Emissions Technologies and Reliable Sequestration: A Research Agenda [ https://www.nap.edu/catalog/25259 ]
  • Royal Society, 2018: Greenhouse gas removal [ https://raeng.org.uk/greenhousegasremoval ]
  • U.S. Global Change Research Program (USGCRP), 2018: Fourth National Climate Assessment Volume II: Impacts, Risks, and Adaptation in the United States [ https://nca2018.globalchange.gov ]
  • IPCC, 2018: Global Warming of 1.5°C [ https://www.ipcc.ch/sr15 ]
  • USGCRP, 2017: Fourth National Climate Assessment Volume I: Climate Science Special Reports [ https://science2017.globalchange.gov ]
  • NASEM, 2016: Attribution of Extreme Weather Events in the Context of Climate Change [ https://www.nap.edu/catalog/21852 ]
  • IPCC, 2013: Fifth Assessment Report (AR5) Working Group 1. Climate Change 2013: The Physical Science Basis [ https://www.ipcc.ch/report/ar5/wg1 ]
  • NRC, 2013: Abrupt Impacts of Climate Change: Anticipating Surprises [ https://www.nap.edu/catalog/18373 ]
  • NRC, 2011: Climate Stabilization Targets: Emissions, Concentrations, and Impacts Over Decades to Millennia [ https://www.nap.edu/catalog/12877 ]
  • Royal Society 2010: Climate Change: A Summary of the Science [ https://royalsociety.org/topics-policy/publications/2010/climate-change-summary-science ]
  • NRC, 2010: America’s Climate Choices: Advancing the Science of Climate Change [ https://www.nap.edu/catalog/12782 ]

Much of the original data underlying the scientific findings discussed here are available at:

  • https://data.ucar.edu/
  • https://climatedataguide.ucar.edu
  • https://iridl.ldeo.columbia.edu
  • https://ess-dive.lbl.gov/
  • https://www.ncdc.noaa.gov/
  • https://www.esrl.noaa.gov/gmd/ccgg/trends/
  • http://scrippsco2.ucsd.edu
  • http://hahana.soest.hawaii.edu/hot/
was established to advise the United States on scientific and technical issues when President Lincoln signed a Congressional charter in 1863. The National Research Council, the operating arm of the National Academy of Sciences and the National Academy of Engineering, has issued numerous reports on the causes of and potential responses to climate change. Climate change resources from the National Research Council are available at .
is a self-governing Fellowship of many of the world’s most distinguished scientists. Its members are drawn from all areas of science, engineering, and medicine. It is the national academy of science in the UK. The Society’s fundamental purpose, reflected in its founding Charters of the 1660s, is to recognise, promote, and support excellence in science, and to encourage the development and use of science for the benefit of humanity. More information on the Society’s climate change work is available at

Image

Climate change is one of the defining issues of our time. It is now more certain than ever, based on many lines of evidence, that humans are changing Earth's climate. The Royal Society and the US National Academy of Sciences, with their similar missions to promote the use of science to benefit society and to inform critical policy debates, produced the original Climate Change: Evidence and Causes in 2014. It was written and reviewed by a UK-US team of leading climate scientists. This new edition, prepared by the same author team, has been updated with the most recent climate data and scientific analyses, all of which reinforce our understanding of human-caused climate change.

Scientific information is a vital component for society to make informed decisions about how to reduce the magnitude of climate change and how to adapt to its impacts. This booklet serves as a key reference document for decision makers, policy makers, educators, and others seeking authoritative answers about the current state of climate-change science.

READ FREE ONLINE

Welcome to OpenBook!

You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

Do you want to take a quick tour of the OpenBook's features?

Show this book's table of contents , where you can jump to any chapter by name.

...or use these buttons to go back to the previous chapter or skip to the next one.

Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

Switch between the Original Pages , where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

To search the entire text of this book, type in your search term here and press Enter .

Share a link to this book page on your preferred social network or via email.

View our suggested citation for this chapter.

Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

Get Email Updates

Do you enjoy reading reports from the Academies online for free ? Sign up for email notifications and we'll let you know about new publications in your areas of interest when they're released.

IMAGES

  1. Speaker to address climate change and its effect on human health

    climate change essay in gujarati pdf

  2. Speaker to address climate change and its effect on human health

    climate change essay in gujarati pdf

  3. ≫ Global Climate Change Free Essay Sample on Samploon.com

    climate change essay in gujarati pdf

  4. Climate change essay. How to Write a Climate Change Essay: Example and

    climate change essay in gujarati pdf

  5. ≫ Climate Change Free Essay Sample on Samploon.com

    climate change essay in gujarati pdf

  6. Article Writing: Stepwise Guide, Format, Sample, & Tips

    climate change essay in gujarati pdf

VIDEO

  1. ૨૬મી જાન્યુઆરી ગુજરાતી નિબંધ |ગુજરાતી નિબંધ લેખન

  2. Write 10 lines on Climate change

  3. climate change essay

  4. जलवायु परिवर्तन पर निबंध

  5. Climate change India after 2030 🔥

  6. 10 Lines about Climate Change #climatechange #essayclimatechange #shortspeech

COMMENTS

  1. Climate Change Department, Govermment of Gujarat

    The Climate Change Department acts as a bridge within the Government, and between the Government and the Society to address Climate Change. Gujarat is the first and only State in India, the first in Asia and fourth in the world to form an independent department for Climate Change. Gujarat Energy Development Agency (GEDA)works under the aegis of ...

  2. जागतिक तापमानवाढ

    Union of Concerned Scientists Global Warming page Watch and read 'Tipping Point', Australian science documentary about effects of global warming on rare, common, and endangered wildlife United Nations University's 'Our World 2' Climate Change Video Briefs Gateway to the UN System's Work on Climate Change संदर्भ आणि नोंदी

  3. climate change : દુનિયામાં તાપમાન 50 ડિગ્રીને પાર જાય એવા દિવસોની

    climate change : દુનિયામાં તાપમાન 50 ડિગ્રીને પાર જાય એવા દિવસોની સંખ્યા બમણી થઈ - BBC ...

  4. PDF Sustainable Development Goals Under Climate Change for Gujarat

    Climate Change Action Plans for all districts: While Ahmedabad and Rajkot have Climate Change and Environment Action Plans, the absence of similar plans for other districts limits the comprehensive approach needed for addressing climate-related challenges across the state.

  5. Climate change: Gujarat is battered by heat waves, floods, drought. How

    Gujarat is battered by heat waves, floods, drought. How are its cities coping? Rising climate variability is adding to the state's environmental vulnerabilities.

  6. Impact of Climate Change on Water Crisis in Gujarat (India)

    This study proposes that impact of meteorological drought on groundwater in the backdrop of climate change is resulting in an unsustainable water crisis. This study indicates the fact that, spatially and temporally, the groundwater has declined in Gujarat and it started declining more after the year 2000.

  7. Climate change in India: Gujarat faces problem of plenty

    Published on: 12 Oct 2018, 6:51 am. Fifty five-year Khan Mohammed Abdarman is a proud Maldhari, one of India's oldest pastoral communities that has lived a nomadic life in Gujarat's arid Banni grassland for over 500 years. But in 2007, he decided to do the unthinkable—to settle down and do farming. "The decision was difficult, but it ...

  8. PDF Adapting Gujarat to Climatic Vulnerabilities: The Road Ahead

    Keeping this in view, and the fact that there exists a dearth of systematic literature with reference to climate change in Gujarat, the present study aims to assess the impacts of climate change particularly with reference to rainfall and temperature parameters notwithstanding the relationship between climate change and the vulnerability of ...

  9. PDF Coastal Communities and Climate Change: A Case Study in Gujarat, India

    The case of Jamnagar City Region of Gujarat Coast in Gulf of Kutch, India shows the extent of vulnerability, exposure and perceptive challenges of climate change both at local level and at the household of coastal communities of farmers and fishermen Figure 1 for the location of Jamnagar City. Jamnagar City Region-Perceptions and Preparedness ...

  10. Climate change in Gujarat: A bar towards sustainable development

    There is an utmost need for participatory and inclusive efforts to evade the surging ecological, economic and social crisis accruing to global warming. Gujarat today needs institutional reforms and policy reforms that can mitigate the far reaching and harsh blisters of climate change especially on the poorer and vulnerable spectrum of the society.

  11. Climate Change : પૃથ્વી પરનું પાણી ખતમ થઈ જશે? શું છે એનાં કારણો અને

    Climate Change : પૃથ્વી પરનું પાણી ખતમ થઈ જશે? શું છે એનાં કારણો અને ઉપાય? 30 ઑક્ટોબર 2021

  12. Coastal Communities and Climate Change: A Case Study in Gujarat, India

    Go to. Jamnagar city region, located in a coastal area, is vulnerable to climate change. The exposure and sensitivity to climate change variability of the city region have increased during the past 50 years. Climate variable in terms of rising temperature and reduction in a number of rainy days has resulted in greater exposure and sensitivity ...

  13. Climate of Gujarat: Weather Patterns and Impacts on the Region

    In contrast, the desert zone, comprising districts like Kutch and Banaskantha, has an arid climate with extremely hot summers and cold winters. Gujarat, like the rest of the world, is experiencing the impact of climate change, including rising temperatures, changing precipitation patterns, and extreme weather events.

  14. Climate Change Essay in English- जलवायु ...

    Climate Change Essay in English- जलवायु परिवर्तन पर निबंध 1000 शब्दों में. Climate change is the term used to describe a bad change in the climate and its effects on Earth's living things. Get Climate change essay in English and Hindi in short and long form for students. nayanshi ...

  15. Coastal Ecosystem Services of Gujarat, India: Current ...

    Gujarat is the only state in India with the longest coastline of 1663 km (20% of the country) and the widest shelf zone covering about 184,000 km2. The main feature includes two gulfs, the Gulf of Khambhat and the Gulf of Kachchh, and the open coast of Saurashtra...

  16. વાયુનું પ્રદૂષણ

    ચર્ચા પાના પર કદાચ આ બાબતે વધુ માહિતી મળી શકે છે. વાયુનું પ્રદૂષણ એ રસાયણિક (chemical), જૈવિક (biological material) અને રજકણીય પદાર્થો (particulate matter)નો પરિચય છે ...

  17. Review and synthesis of climate change studies in the ...

    There are a few regions in the world, where climate change impacts are more intense than other regions of the world, and Himalaya is the case. The Himalaya, one of the biodiversity hotspot regions and provider of ecosystem services to billion of people all across the world. Present study reviewed and synthesized climate change studies in the Himalayan region in general and Indian Himalayan ...

  18. PDF Climate Change in Asia and the Pacific

    5.2 Timing of Climate Change Adaptation Related to Selected Measures 72 6.1 Annual Water Withdrawal by Sector, 2004 83 6.2 Summary of Key Observed Past and Present Climate Trends and Variability 85 6.3 Status of Coral Reefs in Selected Regions of Asia, 2004 87 6.4 Projected Changes in Surface Air Temperature and ...

  19. PDF Climate change: The Ultimate Challenge for Economics*

    A good example, which will be the subject of this essay, is climate-change science and policy, which involve a wide variety of disciplines such as atmospheric chemistry and climate science, ecology, economics, political science, game theory, and interna-tional law.

  20. PDF Climate Change: Evidence & Causes 2020

    Climate Change. Evidence & Causes. Update 2020. 2Climate ange. Qummary. CLIMAT HANG N H EFININ SSUE U IME. It is now more certain than ever, based on many lines of evidence, that humans are changing Earth's climate. The atmosphere and oceans have warmed, which has been accompanied by sea level rise, a strong decline in Arctic sea ice, and ...

  21. Climate of Gujarat

    The climate of Gujarat involves diverse conditions. [ 1] The plains of Gujarat are very hot and humid in summer and cold and dry in winter. Summer is milder in the hilly regions and the coast. The average daytime temperature during winter is around 29 °C (84 °F) and in nights is around 12 °C (54 °F) with 100 percent sunny days and clear nights.

  22. PDF gujenvis.nic.in

    gujenvis.nic.in

  23. Climate Change: Evidence and Causes: Update 2020

    C ONCLUSION This document explains that there are well-understood physical mechanisms by which changes in the amounts of greenhouse gases cause climate changes. It discusses the evidence that the concentrations of these gases in the atmosphere have increased and are still increasing rapidly, that climate change is occurring, and that most of the recent change is almost certainly due to ...